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ABSTRACT

LEARNING THE STRUCTURE OF ACTIVITIES
FOR A MOBILE ROBOT

MAY 2002

MATTHEW D. SCHMILL

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Paul R. Cohen

At birth, the human infant has only a very rudimentary perceptual system and

similarly rudimentary control over its musculature. As time goes on, a child develops.

Its ability to control, perceive, and predict its own behavior improves as it interacts

with its environment. We are interested in the process of development, in particular

with respect to activity. How might an intelligent agent of our own design learn

to represent and organize procedural knowledge so that over time it becomes more

competent at its achieving goals in its own environment? In this dissertation, we

present a system that allows an agent to learn models of activity and its environment

and then use those models to create units of behavior of increasing sophistication for

the purpose of achieving its own internally-generated goals.
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CHAPTER 1

INTRODUCTION

We are interested in understanding the nature of activity in intelligent agents.

How does an infant, starting with very modest sensory and motor apparati, develop

activities that allow it to reliably achieve its goals? How might robots, or computer-

based agents, do the same? This dissertation describes a system architecture designed

to model the development of activity in robotic or simulated agents.

Our interest in the development of activity is twofold. A system that can develop

activity has many practical applications; agents that can learn and adapt their be-

haviors are more robust and flexible than those that cannot in all but the most trivial

applications. Real-world domains are too complex for an agent designer to anticipate

every contingency that might come up. From industrial assembly tasks to scien-

tific exploration, adaptation provides a distinct practical advantage over hard-wired

behaviors.

A second motivation for this dissertation is that we believe that the development

of activity is fundamental to the development of all types of conceptual knowledge.

A system that allows an agent to develop activity is therefore central to artificial

intelligence, and can shed light on the nature of human intelligence.

Our activity-centric perspective on human intelligence is inspired by the interac-

tionist philosophy of Lakoff and Johnson [47] and Piaget’s theories of early develop-

ment [30, 25]. The central themes of interactionist philosophy, as well as Piaget’s

theory (certainly the first stages), are that little native structure is necessary to sup-

port learning and development, and that the bases of conceptual knowledge are boot-

1
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strapped from simple sensorimotor experience between an actor and its environment.

In Piaget’s words1:

The aquisition of knowledge is a gradual developmental process made
possible through the interaction of the child with the environment.

To this end, activities, and the ability of an intelligent agent to organize its be-

havior into units that allow it to achieve goals, are of paramount importance, and

basic to the development of all conceptual knowledge. We can identify four basic

conceptual structures that are hallmarks of human intelligence. Activities encode

knowledge about how the primitive motor capabilities of an agent can be combined

to produce complex behaviors and achieve the agent’s goals. Classes are extensional

structures that relate the features and objects of the environment to the types of

activities they afford; empty soda cans and tennis balls belong to the class of objects

I have grasped. Concepts are the intensional versions of classes. They encode the

necessary conditions of class membership, for example, what is required for an object

to be graspable; perhaps objects with a diameter less than 4 inches. Finally, activity,

classes, and concepts serve as the foundations for creating associations between spo-

ken or written words and knowledge grounded in the environment. These associations

form the basis of language.

A simple understanding of how these four types of knowledge emerge is pictured

in figure 1.1. This “waterfall” model of development may be interpreted as follows.

In the beginning of the process, an agent bootstraps conceptual development by

exercising its primitive motor skills and building models of the results. The agent

essentially learns what its actions do and how the environment mediates the effects

of its actions. As its models improve, the agent begins to organize its motor skills

into activities of increasing complexity.

1G.Lefrancois. (1995) Theories of Human Learning (3rd ed.) Brooks; Cole
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As activities grow in complexity, opportunities for objects in the environment to

play significant roles in determining the outcome of these activities become more

frequent. Suppose, for example, the agent has pieced together an exploratory activity

to locate, grasp, and lift an object. If a heavy stone is chosen to fill the “object to be

lifted” role of the lift portion of the behavior, the activity will unfold differently than

if an empty soda can is chosen. In the former case, the agent will fail to lift the heavy

object. Perhaps it will strain itself and feel pain. In the latter case, the agent will lift

the empty can without difficulty. Experiences like these allow the agent to build the

beginnings of classes. The heavy stone belongs to the class we might call “objects

that hurt to lift”, while the soda can falls into a class we might label “objects that

have been lifted”.

As classes grow in size, it becomes possible to abstract out the features of objects

that determine class membership. This allows the agent to generate intensional con-

cepts, which provide the agent the capability to reason about how its activities will

unfold in novel situations. Our reaching and grasping agent might build up a concept

that could be labeled “heavy” or “easy to lift”.

Further experience with activities, classes and concepts in the presence of spoken

word facilitates the acquisition of language. As our agent attempts to lift the stone,

an observer might utter the word “heavy”, allowing the agent to make the connections

between the spoken word and active conceptual structures like its the concept of a

heavy object. Word meanings form the basis for natural language understanding,

and language, in turn, allows the developmental process to short-circuited. Later

activities and concepts may be grounded in language instead of experience.

The waterfall model, and Piaget’s words, underscore a fundamental difference

between what we will call development and learning. Learning is the process of

acquiring and refining a particular structure: how to grasp an object, or what it

means to be graspable. Development is the incremental process of an agent posing,
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Activities

Classes

Concepts

Language

Effectors
Environment

Sensors

Figure 1.1. A waterfall model of the development of conceptual structure.

solving, and refining a multitude of cooperative learning tasks. It is a gradual process

in which learning tasks interact; gains made in one learning problem can carry over

to other learning processes. For instance, learning and optimizing the grasp activity

enables an agent to produce and refine a throw activity. The template architecture

for any developmental process, including activity learning, is pictured in figure 1.2.

This dissertation documents our interest in development, specifically, the develop-

ment of activity, the pivotal first step of the waterfall model. The remainder of this

dissertation will be devoted to filling in the boxes of figure 1.2 in such a way that an

agent using this model will develop activities of increasing sophistication and utility.

Furthermore,

We attempt to make as few nativist concessions (innate endowments) as is practically

possible.

Filling out the boxes should support downstream conceptual learning of classes,

concepts, and language.

The basic unit of currency that the developing has to work with is the experience –

a sensorimotor representation of an interaction with its environment.
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Execute the Solution/
Generate Experiences

Pose a Learning Task Generate a Solution

Figure 1.2. The basic architecture of a developmental process.

1.1 Sensorimotor Agents and Experiences

Before filling in the boxes of figure 1.2, it is important to establish what we mean

by a sensorimotor agent as well as what an experience is. Simply, sensorimotor

agents are agents with access only to raw sensory information and motor function.

Sensorimotor agents have not built abstractions on their sensors, attached meaning to

them, nor have they built composite activities from their raw motor function or even

discovered what their effectors do. Sensorimotor agents are endowed with the ability

to access sensor values and activate motor controls, and nothing more. We define a

sensorimotor experience as time series of sensor readings, polled at some frequency,

during a span of time where an agent is engaged in intentional action. Different types

of sensorimotor agents experience their environment in different ways.

The work described in this dissertation is built on the premise that enivornments

that are rich with structure offer a sensorimotor agent more opportunities to learn

increasingly sophisticated activities. As the number of possible sensations, interac-

tions, and activities goes up, though, the learning problem may become more difficult

to manage. Less complex environments, while limiting the number and variety of ac-

tivities to be learned, offer the advantage of simpler learning tasks. Platforms for

learning exist on a spectrum that can be alternately viewed in terms of the difficulty

of the developmental undertaking and the richness of the potential results.

At one end of the spectrum are simple domains. Domains such as the gridworld

(used as an evaluation domain in many early reinforcemnt learning publications)

racetrack domain (introduced by Barto et al in [2]) provide an agent with a small
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number of discrete-valued sensors, complete information about the sensor (state)

space, and a small number of discrete effectors. These domains neither afford nor

demand terribly complex activities. However, learning in these domains is generally

tractable, and their value lies in proof of concept; they show that a particular approach

is capable of learning on a limited scale, and whether scaling up is worth pursuing at

all.

At the other end of the spectrum are complex domains such as robots interacting

in cluttered environments. Their sensory input is high-dimensional and continuously-

valued. Their effector space is multidimensional, continuous, and effectors have tem-

poral extent. These environments are for all intents and purposes probabilistic and

partially observable. While knowledge generated by learning in these real-world en-

vironments is clearly apt to be rich and useful, the sheer volume of sensory data that

such a domain offers is often overwhelming for a learning algorithm. Many learning

algorithms simply have no answer for the unique challenges that real-world domains

can present.

The approach we have taken is to design our system to address the demands of

a complex environment, implement it at the simple side of the spectrum, and scale

it up to increasingly complex environments. In this section, we describe domains

of varied sophistication that will be used as examples and testbeds throughout the

dissertation: one simulated domain and two real-world, robotic platforms.

1.1.1 GridSim

The simplest domain we consider is based on the grid-world domain that is often

used as a test bed for machine learning systems. The archetypical grid world domain

consists of an agent, an m × n grid, and possibly objects placed on the grid. In its

simplest incarnation, grid cells are either unoccupied, occupied by a wall, or occupied

by a goal indicator. The agent can move from its current cell to any adjacent cell
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vision n-cam-shape n-cam-color n-cam-dist
e-cam-shape e-cam-color e-cam-dist
s-cam-shape s-cam-color s-cam-dist
w-cam-shape w-cam-color w-cam-dist
ccs-shape ccs-color

bay bay-color bay-shape
drives pain reward

Table 1.1. The primitive sensor suite for GridSim agents.

as long as the cell is not occupied by a wall. In typical implementations of the grid

world, the effects of actions are discrete and instantaneous, and the agent can sense

its location on the grid in cartesian coordinates. In many instances, the task given to

grid-world agents is to find and move onto a goal cell.

The simplicity of this domain presents a tractable set of problems to learning

systems by limiting the kinds of activities that are possible and limiting the compli-

cating factors present in real-world domains like noise, temporal issues, and so on.

Many learning systems designed for such domains are not guaranteed to scale up,

and frequently are ill-equipped to cope with more complex environments. In order to

add richness to this environment, and to introduce some real-world complexities (we

would like our system to scale to real-world domains), we have extended the basic

grid world simulation in the following ways:

• The agent has sensors rather than access to its location on the grid. Sensors

return properties of the agent’s surrounding environment, and are modeled af-

ter sensors that might be found on a real-world robot. A list of the sensor

suite, which includes mostly visual sensors (camera sensors), we use is shown in

table 1.1.

• Sensor information is dynamic and sensors may be discrete or real-valued. Sen-

sor values are updated every 100µsec. Sensor values change continuously over

the duration of an activity.



c©Matt Schmill 2003, preprint - do not distribute 8

Figure 1.3. A rendering of the GridSim simulator.

• Grid cells can contain objects other than walls. In our simulation, there are

debris objects, with which an agent can share a cell, as well as specially marked

cells which have various roles in interactions between the robot and environment.

Different types of objects and marked cells are sensed by the agent’s visual

sensors, which report their shape, color, and distance.

• The agent has two actions at its disposal in addition to movement. The agent

can still move from cell to cell in the cardinal directions, as in the original grid

world, but can also lift and drop debris.

A sample snapshot of a gridworld simulation is shown in figure 1.3. This 8×8 grid

is surrounded by a wall and contains several pieces of debris (rendered as diagonally-

oriented rods) as well as visible dropoff locations where debris may be deposited

(rendered as circles). The agent is rendered as face slightly off the center of the grid.

Walls, debris, and dropoff cells are all visible to the agent. Each of the agent’s visual

sensors will report a color and shape code for any visible object, and each of the

directional sensors will report a distance to the nearest visible object. Along the east

wall of the grid are cells with a unique shape and color (rendered as diamonds) whose

function is user-definable.
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Figure 1.4. A GridSim experience: moving east.

Many types of agents could be placed in the GridSim simulator, but we work with

one primary agent, which we will call the nesw agent. This agent has 6 effectors:

move-n, move-e, move-s, move-w, lift, and drop. The first four attempt to move the

agent one cell to the north, south, east, and west, respectively. The latter two attempt

to lift any debris in the current cell into the agent’s cargo bay or drop those contents,

respectively. This agent has the sensors listed in table 1.1: 4 visual sensors, each of

which senses the color, shape, and distance to the nearest object in each of the four

cardinal directions. It can also sense the color and shape of any object it shares a cell

with (via a sensor called the current cell sensor, or ccs) as well as what it holds in its

cargo bay (via the bay sensor). Color and shape sensors take integer-encoded values;

the color red might be encoded as the digit “1”, for example.

Our simulated agents also have two additional sensors: a reward sensor and a pain

sensor. The pain and reward sensors can be used to simulate negative and positive

reinforcement in these environments. Pain, by default, is incurred when the agent

moves into the walls surrounding the grid. Both pain and reward can be administered

at the discretion of the experiment designer. An example use of the reward sensor

would be to administer reward for dropping debris into the dropoff cells.
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An example experience of the nesw agent moving in the GridSim domain is

shown in figure 1.3. Each plot is a time series of sensor readings, one sample taken

per millisecond, for each of the primary sensors of the agent2. Note in this experience,

the visual sensors change as the agent moves away from an object in its current cell:

the current cell sensor goes low indicating that the experience started with a visible

object in the current cell and ended without one. The east camera sensor shows a

decrease in distance, indicating it is approaching an object. The north facing camera’s

shape and color sensors change over the course of the activity, indicating a new object

comes into view as the agent moves east. The west camera shows changes in shape,

color, and distance, which correspond to the object that was previously in the current

cell sensor being picked up by the west facing camera as the agent moves away from

it. Finally, the bay sensor and south facing sensors show no change over the course

of the experience. Experiences like this one, represented as sensor time series, form

the basis of development in this dissertation.

The 8 × 8 grid serves as a baseline in our analyses. Larger grids, with greater

variation in the types of objects the agent interacts with, resulting in new and richer

experiences, are possible and we consider these as we assess the scalability of our

system.

1.1.2 Pioneer-1 mobile robot

The ultimate goal of this research is to implement our theory on a real robot

operating in the real world. The Pioneer-1 is a small (1.5 square foot) mobile robot

pictured in figure 1.5. The Pioneer-1 has two independently controllable drive wheels

as well as a gripper module for picking up objects, affording the robot the opportunity

to take 4 primitive activities: close-gripper (close and raise the gripper), open-

2The GridSim sampling rate is user-definable. We use a rate of 10Hz here because this is the
sampling rate of our real-world platform, the Pioneer mobile robot.
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Figure 1.5. The Pioneer-1 mobile robot.

gripper (lower and open the gripper), move (forward or backward in a straight

line), and turn (in place, clockwise or counter-clockwise). These actions may be

executed simultaneously (with the exception of close-gripper and open-gripper).

The move and turn actions, can be activated to achieve and maintain rates of

−500. . .500mm
sec

and −120. . .120deg

sec
respectively.

The Pioneer-1 has 36 primitive sensors that can be thought of as falling into 4

different modalities. Its Cognachrome vision system is capable of tracking 3 objects

of different colors at 60Hz. The 3 channels for color blob tracking are labeled A, B,

and C, with each channel reporting the X and Y location of the dominant (largest

area) blob in the visual field, as well as the blob’s width, height, and area. We also

approximate the blob’s distance from the Pioneer-1, yielding a total of six attributes

per blob being observed. Seven sonars provide a second modality of sensing, each

with a range of five meters, with five of the seven sonars pointing roughly forward

and one each pointing 90 and -90 degrees to the side. A third modality is derived

from wheel encoders, which provide feedback about rotational, translational, and

individual wheel velocities as well as binary sensors for detecting when the robot is
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sonar sonar-0 sonar-1 sonar-2 sonar-3
sonar-4 sonar-5 sonar-6

motion r-wheel-vel l-wheel-vel trans-vel rot-vel
r-stall l-stall robot-status

gripper grip-state grip-front-beam grip-rear-beam grip-bumper
vision vis-a-area vis-a-x vis-a-y vis-a-h vis-a-w

vis-b-area vis-b-x vis-b-y vis-b-h vis-b-w
vis-c-area vis-c-x vis-c-y vis-c-h vis-c-w
vis-a-dist vis-b-dist vis-c-dist

Table 1.2. The Pioneer-1’s 36 sensors.

stalled or moving. Finally, the gripper module provides 5 discrete-valued sensors: one

bump sensor, two break beams for detecting objects within the gripper’s paddles, and

one gripper state variable. A list of the Pioneer-1’s sensors is shown in table 1.2.

1.1.3 Pioneer-2 mobile robot

The Pioneer-2 mobile robot, pictured in figure 1.6, is RWI’s next-generation Pi-

oneer robot. The Pioneer-2 improves on the the Pioneer-1, most notably in that

its vision system is much more robust and more capably distinguishes objects of

different color. The Pioneer-2 also has 7 rear-mounted sonars as well as a ring of

bumpers mounted on the rear of the robot. These sensors provide additional sensory

information for the rear of the robot, which the camera cannot cover. The addi-

tional sensor information, as well as the improved vision system make the Pioneer-2

a superior platform to the Pioneer-1. As such, the references to the “Pioneer” plat-

form throughout this document will implicitly indicate the Pioneer-2, whereas the

Pioneer-1 will indicate the older platform.

The full suite of sensors available to the Pioneer-2 are listed in table 1.3. They are

essentially the same as the Pioneer-1, with the additional ring of rear-facing sensors,

the panel of rear-facing bump sensors. The gripper bump sensor from the Pioneer-1

has been eliminated from the Pioneer-2 design.
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Figure 1.6. The Pioneer-2 mobile robot.

sonar front-sonar-0 front-sonar-1 front-sonar-2 front-sonar-3
front-sonar-4 front-sonar-5 front-sonar-6
rear-sonar-0 rear-sonar-1 rear-sonar-2 rear-sonar-3
rear-sonar-4 rear-sonar-5 rear-sonar-6

motion r-wheel-vel l-wheel-vel trans-vel rot-vel
r-stall l-stall robot-status
rear-bumper-0 rear-bumper-1 rear-bumper-2 rear-bumper-3 rear-bumper-4

gripper grip-state grip-front-beam grip-rear-beam
vision vis-a-area vis-a-x vis-a-y vis-a-h vis-a-w

vis-b-area vis-b-x vis-b-y vis-b-h vis-b-w
vis-c-area vis-c-x vis-c-y vis-c-h vis-c-w
vis-a-dist vis-b-dist vis-c-dist

Table 1.3. The Pioneer-2’s 47 sensors.
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Figure 1.7. A Pioneer-2 experience: moving forward at 250mm/sec.

An example experience of the Pioneer-2 robot moving forward at 250 mm/sec

is shown in figure 1.7. The difference in granularity, noise, and complexity from

the GridSim experience should be immediately clear. The wheel velocity sensors

show some oscillation during which the Pioneer’s movement is in reality somewhat

jerky. Transitions in the sonar sensors as the Pioneer approaches an object are not

smooth and monotonic as in GridSim. Finally, channel C of the vision sensor is

simply noise. While a naive agent might assume that there is structure in the noise,

a developing agent must learn to differentiate true structure from noise, and account

for it as necessary. Real-world platforms offer significant challenges to learning (and

thus developmental) systems. Still, the data on which development is based are the

same: experiences in which the agent is engaged in activity, represented as time series

sensor readings. Throughout the dissertation, we will refer back to the Pioneer-2 as

a testbed and ultimate platform of choice for this work.

1.2 An Example Activity

Internally, activities may be represented in a number of ways: they may be speci-

fied as simple action sequences, as rule-based systems, or scripts similar to computer
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programs. But, what defines an activity; what distinguishes one activitiy from an-

other? What does an activity look like?

It is safe to say that experiences define an activity. We can be more specific with

an example. Consider an agent operating in the GridSim domain, as configured in

figure 1.3. Suppose the agent were to execute the sequence move-w, lift, move-w,

move-w, drop. Each action, when executed, will produce an individual experience

with characteristic sensory behavior. Based on the sensory behavior, one might label

the individual experiences resulting from this action sequence, starting in the specified

state, as follows:

1. move over debris

2. lift debris

3. approach receptacle

4. move over receptacle

5. drop debris into receptacle

Now suppose that the agent were to execute the same action sequence starting

in the grid cell directly to the south of where it is in figure 1.3. We might label the

individual experiences as follows:

1. approach debris

2. lift nothing

3. move over debris

4. move off of debris, on to receptacle

5. drop nothing
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Because the context when each action in the sequence is different, the outcomes of

each of action is also different. The lift action of step 2 fails to lift anything because

it has not reached the debris yet. Clearly, the two sequences do not correspond to

the same activity even though the sequence of actions is the same. The effects the

actions have on the domain changes completely. Next, suppose the agent were to

start one cell to the south of where it is in figure 1.3, and it were to execute the

sequence move-w, move-w, lift, move-w, drop. We might label these experiences as

follows:

1. apprach debris

2. move over debris

3. lift debris

4. move over receptacle

5. drop debris into receptacle

We would likely put this activity in the same class of activity as the first sequence,

but again, not the second. This is because we perceive and classify activities by their

changes on the domain, and in particular, how they end. This is in no small way

due to our perception that in the simplest case, behavior is motivated, and that a

particular unit of activity ends in the goal. The first and third sample activities end

with a qualitatively similar experience; the perceived goal in each case was to drop

debris into a receptacle. The second activity, though it consisted of the same action

sequence as the first, ended differently, and thus our interpretation of the behavior,

is wholly different. Let us define an activity as a specification of behavior that ends

in some desired experience.

An activity we might expect a Pioneer robot to develop would be acquire. In the

acquire activity, the Pioneer first locates an object by rotating, then positions itself
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locate

Position

Goto

Acquire

clear gripper approach grasp

Figure 1.8. A sample hierarchy of activity. At the root is the acquire activity
which finds and grasps an object.

such that the object is between its gripper paddles by moving up to the object, and

then closes and raises the gripper, thus grasping the object.

Alternatively, the acquire activity could be described by a sequence of two sub-

activities: goto and grasp. The difference between this specification and the previous

description is that here, the sequence of moves and turns leading up to the grasp

experience is encapsulated into the more abstract operator called goto. Goto may in

turn be broken down into a simple sequence of 2 subactivities (position and move),

and so on, as shown in figure 1.8. There are two major advantages of this hierarchical

representation over a flat representation in which each activity is described at the

level of primitive actions:

• It is computationally less expensive to search through a space of activity se-

quences if the search can be constrained to shorter sequences. To achieve more

complex goals under such constraints, individual units of activities must be able

to do more.

• The creation of intermediating units like goto increases economy where reuse is

possible. Goto, for example, would be a useful subactivity for the push activity

as well as acquire.

Figure 1.8 shows one possible hierarchy for describing the makeup of an acquire

activity. It is important to note that the activity labels in this hierarchy are all post-
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hoc and included for readability, and our benefit only; the robot does not necessarily

know that it has learned an activity called “acquire”, or that the robot should be

constrained to generate this particular hierarchy for an activity that results in the

same outcome.

We contend that hierarchical activities like the one shown in figure 1.8 are created

by building upward from the leaves (which are primitive actions), one level at a time,

by simple composition during development. An activity called foveate, which keeps an

object centered in the visual field, is composed using only turn actions. The ability

to foveate on objects then allows for more complicated activities to be generated, such

as the position activity, which prepares the agent to acquire an object by opening its

gripper and foveating on an object. The goto activity then builds on positioning,

by moving forward and collecting the object between its gripper paddles. Finally,

the simple combination of goto followed by close-gripper completes the acquire

activity.

This incremental building of skills allows the composition process at each node in

the hierarchy to be a simple combination of a manageable number of subactivities in

sequence (not necessarily always 2, as in this example). As the agent accumulates

activities, it can do more in a single activity, and thus, simple composition can achieve

more, never subjecting the agent to giant (or intractable) search spaces.

1.3 Overview

Having established some experimental platforms, the basic building blocks of de-

velopment (experiences), and the goals of development (activities), we now turn to

an overview of our system. Recall the blueprint for a developmental process as pic-

tured in figure 1.2. Development is an ongoing, incremental process in which an agent

poses a learning problem, generates a solution, and executes the solution. The solu-

tion provides feedback that the agent can use to refine the solution, should it decide
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to continue with the same learning task or pick it up at a later time. This blueprint

works with any of the conceptual constructs from the overview of development in

section 1: the development of language, classes, concepts, and activities can all fit

this generate-and-test architecture. What and how the agent develops depends on

how the individual boxes are implemented.

Figure 1.9 shows our system architecture for the development of activity. In this

picture, we have replaced generic processes of figure 1.2 with more specific descrip-

tions. What follows is a short overview of our approach.

In large part, how we fill in the box labeled generate a solution in the diagram of

figure 1.2 determines what the rest of the system will look like. The inner workings

of this box create activities that serve the goals of the developing agent, and each

of the other components in our system will be tailored to work in tandem with the

central component that generates activities for the agent to engage in. There are

many available approaches to choose from: reinforcement learning, artificial neural

networks, genetic algorithms and planning among them. Which system we choose will

dictate how our system specifies learning tasks. A system based on reinforcement

learning would solve tasks specified as reward functions, for example. A genetic

programming approach would solve tasks defined by a fitness function. These systems

would then determine a control policy and pass it on to the execution component,

which would generate experiences to learn from, and the cycle repeats.

Our system is based on planning. Planning is an AI technology that has been well-

studied for many years, dating back to 1963, when Newell and Simon introduced the

General Problem Solver (GPS) [59]. The General Problem Solver explicitly reasons

about actions, their effects, and how actions can be sequenced to change an agent’s

current state to a goal state. Over the years, GPS has spawned many lines of research.

What these approaches generally share is that they reason about actions and their

effects, and search for sequences of actions that achieve goals. These systems plan.
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Domain Modeling

Planning

experiences

Execute the Plan/
Generate Experiences

Motivational System/
Goal Selection

Figure 1.9. Our system architecture for the development of activity.

Our motivation for selecting planning as a basis for development is discussed in detail

along with a literature review of approaches to generating behavior, in chapter 3. Not

the least of our motives, though, is strong evidence supporting the use of means-ends

analysis and planning in human problem solving [60, 1].

If an agent is going to engage in planning, it must have operator models that

express the effects actions have on the environment. Operator models form the basis

for reasoning about whether a candidate plan has a chance of achieving an agent’s

goals. Thus, as part of development, our system must include a component that

learns operator models from experiences. The subsystem labeled domain modeling

in figure 1.9 does just this. Operator models express a mapping between domain

conditions and action outcomes. Our system learns these predictive maps between

initial conditions and outcomes for use by the planner. Together, the domain modeling

system and our planner produce activities for an agent to execute. The box labeled

“execute the solution” handles this step.

The box labeled “pose a learning task” is critical in closing the loop of devel-

opment. The handful of technologies that offer solutions to learning behavior –

reinforcement learning, planning, et al. – do so with respect to a particular task

specification. State of the art planning systems can navigate a cluttered hallway and

deliver mail to recipients, but they require tasks to be specified up front, usually by
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the system’s designers. Planning systems require goal specifications that correspond

to the desired tasks and a perceptual space that supports achieving those goals. Each

of these specifications require significant engineering on the part of the developer,

and if some part of the required specification is botched, then the system may not

succeed. Our interest in development, and closing the loop, requires us to internalize

goal generation, and remove system designers from the loop. Our agent must be able

to generate its own sensorimotor goals and select among them. Once it has done this,

it can hand the goal off to the planner, which generates an activity for the execution

module to implement. To this end, we introduce a motivational system as part of our

system. The motivational system generates goals and decides which one to engage in

when the agent has the opportunity to make that decision.

Classical planning defines goals in terms of the agent’s state space. A goal is

simply a specification of a desired world state. Classical planners generally work in

highly abstracted propositional spaces; a goal might be to “have one’s car keys”, for

example. Agents using propositional goals such as these can perceive whether or not

a proposition is true easily. It can simply ask, “do I have my car keys?” This is far

outside the scope of what a sensorimotor agent can do. Our sensorimotor agents can

query sensors and test simple relations such as equality or less-than and greater-than.

A Pioneer-2 goal state might be (vis-a-dist = 0.0), or to drive the distance to

the visible object in channel A down to 0. If a goal is a sensorimotor state (or a

partial state specification), though, goal generation can be problematic in two ways

that classical planners do not have to worry about. First, the space of sensorimotor

states is multidimensional, and real-valued. The goal space is unbounded. How does

an agent choose from an infinite space of goal states? Why choose a goal value of

0.1 for the robot’s sonar instead of 0.11? Second, unconstrained sensorimotor goal

selection opens the door to unachievable or practically unachievable goals, and thus
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pathological planner behavior. A sonar reading of 0 may be physically impossible for

an agent, for example.

The task of goal generation can be constrained in one very important way by

redefining the space of goals an agent might propose. We suggest that at the highest

level of control, agents plan to act rather than to achieve states. This idea is moti-

vated by Piaget’s theories of development, which are centered around the importance

of schemas (reproducable chunks of activity). Much of a developing child’s time,

Piaget observed, is spent discovering, and subsequently repeating schemas, which

roughly correspond to experiences. A child learns what it learns about itself and its

environment in the context of repeating experiences over and over [30]. The theory

implies that it is the activity, not the state, that is rewarding, an idea that ties in

with our observation of the relationship between activities and goals in section 1.2.

It is the act of eating, not the state of having eaten, that is satisfying to an agent.

The child who attempts to acquire a ball does so not to simply have the ball, but so

that it may do something with it. If we are to agree with this idea, then it follows

that planning serves to accommodate a goal activity rather than to place the agent in

some goal state. This view is in contrast with most, if not all, contemporary planning

systems, but it is one we adopt in our developmental system. We call this treatment

of goals planning to act.

Once goals can be enumerated, then the box labeled “pose a learning task” boils

down to rating each possible goal and selecting the most highly rated. Our motiva-

tional system is an extensible framework for doing just this. Any agent is said to be

under the influence of various motivational factors: they might include hunger, aver-

sion to pain, and curiosity. The importance of each motivational factor rises and falls

according to the state of the agent, and using mathematical models of these factors,

we can rate and rank goals, and then simply select the top ranked goal.
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1.4 Claims

The goal of this dissertation is to produce a system capable of incrementally

developing activities of increasing complexity from simple, sensorimotor interactions

with its environment. We have developed a system architecture that allows an agent to

simultaneously learn predictive models of its environment and compose activities that

allow it to systematically and reliably produce desirable changes in its environment.

We introduce a system based on this architecture that employs planning, intelligent

data analysis, and inductive learning as bases for the development of activity. The

central claim of this dissertation can be restated as follows:

Our system provides an agent with the means to learn plans that it can use to achieve

its own goals.

Furthermore, we claim that our architecture, and the algorithms and components

we have selected to fill out the architecture, are the reason the central claim is satisfied.

Let us consider in greater detail how we intend to demonstrate that the central

claim of the dissertation is satisfied by our system. We start by breaking down the

process of development into two subproblems: modeling and activity composition. We

suggest the following metrics for judging the productivity of modeling and activity

composition, respectively.

• The models learned by the modeling system must be accurate in the sense that

they allow the agent to predict the outcomes of its actions.

• The system’s planning compotent, in conjunction with the modeling system,

produces executable plans that facilitate the goals of the agent. To facilitate a

goal is to take the actions necessary to put the agent into a situation where the

predicted outcome of one of its actions is its current goal.

These two concepts work in tandem. The role of the modeling system is to produce

a mapping from action-state pairs to action outcomes. An efficient modeling system
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will, in the process of generating the mapping, produce a working space that is an

abstraction of the overall sensory space of the agent. In the working space, large

regions of the overall state space will map to a single action outcome. A useful

modeling system will produce a mapping that achieves a high level of accuracy. The

goals of the system being action outcomes, the planner has no chance of success if

it cannot make the simple prediction of whether an action, in the current state, will

achieve the goal outcome. In other words, we need not even consider facilitation if

accuracy cannot be established. Let us first elaborate on the accuracy claim.

1.4.1 The Accuracy Claim

In any state s, an action a will produce an outcome that can be differentiated

from other outcomes by the behavior of the agent’s sensors as the outcome unfolds.

For a given environment, some outcome o will unfold when action a is taken in state

s with probability p(o|s, a). It is useful for a system to be able to predict what the

outcome of its actions will be. Furthermore, it is useful to be able to make predictions

from any state, whether it has been visited previously or not, and so an agent should

incorporate generalization into its predictors; a simple lookup table is inadequate in

all but the simplest domains.

We denote a predicted outcome by the symbol ô and an estimated (or observed)

probability of an outcome p̂(o). An uninformed agent, when faced with a need to

predict the outcome of an action in its current state, will make a prediction ôu with-

out utilizing any knowledge of its environment. An uninformed agent might simply

predict the most frequently occuring outcome of an action, maximizing the expected

value p̂(o|a). An informed agent incorporates models of state and the role of the

environment in determining outcomes, maximizing the expected value p̂(o|s, a).
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Let the true outcome of action, that which is actually experienced by executing

a in state s, be denoted by o(s, a).3 The prediction of an uninformed agent will be

denoted ôu(s, a) and the prediction of the informed agent ôi(s, a). The winner-take-all

disparity d(o, ô) between an estimate and a true outcome will be 0 if the estimate and

the true outcome are an exact match, and 1 if they do not match exactly. A model

provides a predictive advantage to an informed agent if the ratio d(o(s,a),ôi,(s,a))
d(o(s,a),ôu,(s,a))

is less

than one over some range of state and action pairs. The model is totally accurate if,

for any state action pair, the following holds:

d̄(o(s, a), ôi, (s, a)) = 1−max
o
p(o|s, a) (1.1)

where d̄ is the mean disparity over a number of trials, and the equality implies

that the informed estimate will be correct as often as the most frequent outcome truly

occurs in the environment, when action a is taken in state s. In deterministic domains,

where there exists an operator o for all state action pairs such that p(o|s, a) = 1, the

accuracy of a model is the complement of disparity, or 1− d̄(o(s, a), ôi, (s, a)) over all

state action pairs.

Our accuracy claim states that the modeling system informs an agent such that

it can make a prediction for any sensory state s, and that the accuracy of our model

improves with experience. If we can establish accuracy, then we can turn our attention

to facilitation with the certainty that if an agent can facilitate a goal outcome, it can

reliably achieve it.

1.4.2 The Facilitation Claim

In all but the most trivial domains, a goal outcome og will have nonzero p(og|s, a)

for only a small range of s and a. That is to say, an arbitrary outcome can only be

3In nondeterministic environments, or those in which an agent’s sensors are insufficient for exact
predictions, o(s, a) may be nonstationary from instance to instance.
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achieved trivially (with a single action) from a limited region of the state space. This

is why an agent requires the ability to plan. Plans allow the agent to reach those

portions of the state space where the probability of a goal outcome are maximized;

plans facilitate goal outcomes. The facility claim can now be specified in detail using

model accuracy as a basis.

When an agent chooses to pursue a goal outcome og starting in state ss, and

the probability p(og|ss) is zero (or very low), the agent must construct a sequence of

actions (a plan) that will move it into a state specification sg, where sg represents a

region in sensory space in which p(og|sg) is non-zero (and preferably close to 1). A

plan can be thought of as having two parts. The first part is an action sequence which

moves the agent into the state region sg, which we call the prefix, and denote ℘(ss, sg).

The second part we call the goal step, and is an action ag chosen as argmaxa p(og|sg, a).

An agent attempts to achieve goals by executing a plan prefix followed by a goal step.

In our discussion of accuracy, we established expectations about the goal step.

With a perfect model, the goal step of a plan will unfold as og with probability

p(og|sg, ag). The matter of evaluating facility, thus, is a matter of evaluating whether

or not the prefix ℘(ss, sg) succeeds in getting the agent from ss into state sg.

Let a myopic actor be an agent that cannot generate prefixes. The best that

this type of actor can do in starting state ss, with some goal outcome og, is execute

the action with the highest estimated probability of resulting in the goal outcome,

argmaxa p̂(og|ss, a). In contrast, a planning actor is capable of producing a prefix

℘i(ss, sg) designed to move the agent from its start state ss, into a region of the state

space sg where p̂(og|sg, a) > p̂(og|ss, a). The facilitation claim, generally speaking,

states that generating and executing a prefix improves the probability of achieving

goals. Furthermore, we claim that facilitation improves as an agent collects experi-

ences.
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We substantiate the facilitation claims in a manner similar to the accuracy claims,

using the same disparity metric. A myopic actor cannot generate or execute prefixes.

It selects a single action ag that maximizes the probability of the goal outcome og

given the state ss that it is in. When it executes ag in state ss, it will produce an

actual outcome o(ss, ag), and we can compute the disparity for the myopic actor’s

behavior as d(og, o(ss, ag). An agent that can plan, however, will generate a prefix

℘(ss, og) that when executed will improve the probability of ag resulting in the goal

outcome. Let us denote the outcome of executing the prefix ℘(ss, og), followed by

ag, starting in state ss, as o(ss, ℘(ss, og), ag). The disparity for the planning actor’s

behavior will be d(og, o(ss, ℘(ss, og), ag)).

The ratio d(og ,o(ss,℘(ss,og),ag))

d(og ,o(ss,ag))
is useful in measuring the advantage that executing a

prefix can provide. If the disparity between the actual outcome and the goal improves

as a result of executing the prefix, then this ratio will be less than one. Let us define

the facilitation statistic as the complement of the disparity ratio: 1− o(ss,℘(ss,og),ag)

d(og ,o(ss,ag))
.

As this formulation implies, facilitation can be measured for arbitrary combina-

tions of states and goal outcomes. Like the accuracy measure, we can aggregate over

the entire space of states and actions, or sample from that space, and arrive at more

general, average performance measures. However, there are a great many (and in

some cases, infinite) states and goals in all but the simplest domains. Averaging over

such a large space is practically prohibitive, and likely to obscure informative struc-

ture of how facilitation changes over time. Questions such as, “are some outcomes

easier to facilitate than others?” and, “do some states more advantageous to start

in, in terms of facilitation?” are best answered by conducting a structured analysis

of facilitation. Thus, we introduce two different perspectives on facilitation:

Coverage is the percentage of the state space for which a planning actor can facil-

itate a fixed income og.
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Capability is the percentage of possible goal outcomes that can be facilitated from

a fixed point or region of the state space.

As we did with the general facilitation statistic, we claim that both coverage and

capability illuminate the advantages of planning, and that these statistics improve

as our system sees more experiences and builds better models. These two new mea-

sures will allow for better experimental control and a more in-depth understanding

of facilitation and planning when we revisit them in our evaluation.

1.5 Contributions

The contributions of this dissertation fall into two categories: general and techni-

cal. General contributions pertain to what we have learned and demonstrated in the

process of constructing a system that extends the paradigm of machine learning to

development, a closed-loop process in which an agent pursues goals of its own design

and learns behaviors in an unsupervised manner. Technical contributions pertain to

the algorithms that comprise our developmental model and how they advance the

state of the art of autonomous agents.

The primary contribution of this dissertation is perhaps one of the simplest ideas.

It is the idea of planning to act; that the goals of a self-determining agent are to

reproduce experiences. It is this idea that allows us to close the developmental loop

by reducing an intractable goal space to a manageable set of practicable goals. This

effectively lifts the constraint that previously seperated learning systems from devel-

opmental systems: that individual learning tasks had to be specified by hand, either

as goals for a planning system, a reward functions for reinforcement learning, fitness

functions for genetic algorithms, and so on.

Closing the loop on development, in addition to the practical benefits of a sys-

tem that develops knowledge necessary to explore and exploit the affordances in an

environment, provides a starting point for a system that can develop many types of
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conceptual structure. For the many schools of research that contend all knowledge

is grounded in information gathered from simple, sensorimotor interaction with the

environment, a system capable of autonomously growing a corpus of activities is a

platform on which later developmental programs can be built. In later sections, we

show that our system does indeed build useable representations of activities, and

builds representations that appear as perhaps the beginnings of classes and concepts.

Related work, such as that described in [62], shows promise that systems for language

development could be tied in with a system such as our own that would allow an agent

to associate word meanings with representations of activity.

Our modeling system represents a technical contribution as a technique for learn-

ing planning operators under adverse conditions. Various approaches to learning

planning operators and action models exist, including Benson’s TRAIL agent [5, 4],

Gil’s extensions to the prodigy planner [28, 29] and Wang’s subsequent extensions

to that same planner [86]. Systems that perform planning at the sensorimotor level

are rare, though, and currently those that learn planning operators are rarer still.

Our modeling system demonstrates that it is possible to learn planning operators in

domains where actions have temporal extent, have complex dynamics, and where a

single operator will have context-dependent effects that are unknown a priori. Our

system simultaneously learns to distinguish between the categorically different out-

comes of primitive actions and the conditions under which the different outcomes are

likely to occur. In addition to the technical contribution of generating useful planning

operators from sensorimotor experience, our modeling system suggests a data point

in the debate over innateness; we demonstrate that, contrary the history of classical

planning, the full set of operators need not be innately known for an agent to develop

coherent behavior, and that general purpose time series analysis and feature detection

algorithms may suffice to handle this task over the course of development.
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1.6 Outline

The remainder of this document is organized as follows. In the next four chap-

ters, we look in detail at each of the individual components of our developmental

architecture as pictured in figure 1.9. Each chapter contains a literature review of

relevant work ending in a motivated argument for choice of algorithms and representa-

tions, followed by a detailed description of our implementation, and any intermediate

experimental results generated over the course of developing our system.

We begin with domain modeling in chapter 2. Here, we describe how the expe-

riences of an agent are transformed into operator models. This chapter includes a

breakdown of how we approach modeling an agent’s domain. We draw on consid-

erable experience with the Pioneer-1 and Pioneer-2 mobile robots in this section to

arrive at a process that involves automated data analysis and inductive learning.

Once we have an operational description of operator models, we can consider

algorithms that generate activities that achieve goals. In chapter 3, we review ap-

proaches to the problem of learning activities. We look at each as a candidate for

our architecture and how the requirements of a developmental system influence our

eventual choice of planning as a basis for the development of activities. In chapter 4,

we describe how plans are executed to achieve goals, and how plan failure can be

detected and execution aborted. Plan execution is non-trivial in our system, and can

have considerable influence on the success or failure of an accpetable plan actually

achieving its goal.

In chapter 5, we complete the developmental cycle by describing goal selection in

detail. We build up a motivational system that guides an agent through development.

This system allows an agent to generate its own goals and then rank them according to

a variety of motivations, ultimately resulting in a preference for what the agent would

like to do next. The motivational system balances the wants and needs of an agent,
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effectively managing the tradeoff between exploration for the sake of learning and

exploitation for the sake of satisfying its own needs (if it has any beyond exploration).

We evaluate our developmental system in chapter 6 by testing the claims intro-

duced in section 1.4. Though examples and preliminary results with the Pioneer robot

are added to the discussion throughout this dissertation, our evaluation is based on

the GridSim domain, an environment for which we have tighter experimental control.

We present trials of our system driving a GridSim agent under a variety of conditions

to show how the measures of accuracy and facilitation behave as our agent accrues

experience. We follow up our analysis of the system performance with conclusions

and alook at the future directions this work might continue in chapter 7.



CHAPTER 2

MODELING

The modeling component of our system acts as an oracle. When the motivational

system or planner require knowledge of how the domain works, they query the mod-

eling system. The modeling system turns sensorimotor experiences into operational

knowledge and shares that knowledge to any other component that needs it.

The primary consumer of domain knowledge is the planner. Recall from the

system overview that the planner strings actions together to make activities. In order

to do this, it needs operator models that express how an agent’s actions affect its

environment. Since we are dealing with agents at the sensorimotor level, the classical

notion of a planning operator, which deals at the more abstract level of propositional

logic, is not a perfect match for our system.

In classical planning, an agent has direct access to a set of operators. An op-

erator is defined by its preconditions and postconditions that describe under what

circumstances an operator can be executed and what happens when the operator is

executed, respectively. An operator’s preconditions are propositions that have truth

values. Suppose an agent has an operator called deliver-mail. Its preconditions might

be the proposition

∃m|(mail(m) ∧ carrying(m))

This proposition states that there is exists something called m that is a parcel of

mail, and that the agent is carrying m. The proposition is true if the agent has a

parcel to deliver, and false otherwise. If this precondition is true, then the operator

32
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deliver-mail can be executed. It is said to apply in the current state. If either of

the propositions in the precondition is not satisfied, the operator does not apply, and

simply cannot be executed by the agent.

Postconditions in classical planning are specified similarly, as propositional asser-

tions making up add and delete lists. The add list specifies new propositions that

become true as a result of executing an operator and the delete list specifies propo-

sitions that are no longer true once the operator completes. The postconditions of

deliver-mail would delete the proposition carrying(m), in addition to any other effects

of delivering mail that might be expressed in the mail delivery domain.

There are two major differences between the world that the classical planners

operate in and the world of a sensorimotor agent. First, sensorimotor agents have

direct access to actions, and not the more abstract notion of an operator. Actions

always apply; there are never preconditions to attempting to turn an effector on or

off. However, a single action may have a variety of outcomes. Consider the Pioneer

robot. It has an action for moving forward, which can be executed at any time,

without conditions on when it may or may not be used. When it does execute the

move action, any one of a number of experiences may unfold. It may bump into

something that it can push, or it may bump into something immovable. It may not

bump into anything at all. An observer may label these outcomes “push”, “crash”,

and “free move”, respectively. These outcomes may be identified by the sensory

patterns they produce. A sensorimotor agent does not know the outcomes of its

actions a priori.

The second difference between classical and sensorimotor operators is that pre-

conditions and postconditions must be expressed in sensorimotor terms. There is no

innate set of perceptual propositions that the agent can use to express preconditions

and postconditions. Our system must express preconditions and postconditions at

the sensorimotor level. At this level, preconditions amount to relational tests on sen-
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sor values like is sonar-0 less than 1000? Postconditions must express how sensors

change as an action executes.

The job of generating operator models at the sensorimotor level, then, consists

of two tasks. First, the agent must identify the qualitatively different outcomes of

its actions. Each outcome forms the basis for an operator model. We call this task

outcome classification. Next, the modeling system must learn the sensory conditions

under which a given action will produce a given outcome. This roughly corresponds

to learning preconditions, with one small distinction to be made. Preconditions in the

classical planning sense express a causal relationship. An operator applies because

the preconditions are true. In our system, we are learning conditions associated with

outcomes. There may or may not be a causal relationship between the condition

and the outcome. Therefore, we call the conditions our learning system detect initial

conditions, and we refer to this second task of the domain modeler as initial condition

induction. In the sections that follow, we describe algorithms we have studied and

implemented to perform these two tasks.

2.1 Outcome Classification

Outcome classification can be viewed as an instance of a more general AI problem

called classifier induction. Classifier induction denotes a class of problems in which

an algorithm learns to classify instances given their features. Outcomes classification

fits this description, with one caveat: classifier induction is traditionally a supervised

process. That is, the set of classes that a problem instance might belong to are known

in advance and the learner is generally given access to a set of training instances that

have been correctly labeled. Inductive classification systems like decision tree in-

duction [8, 38, 66] and version space algorithms [56], attempt to identify features

of problem instances associated with class membership to produce rule-like struc-

tures that can be used for the classification of new, unlabeled instances. Statistical
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approaches like Bayesian classifiers [20, 11, 41] take a probabilistic approach to the

same problem, generating conditional probability distributions over class labels given

feature values, and labeling unknown instances based on the most probable result in

training data. The problem is one of diagnosis, and indeed much of the literature of

machine classification focuses on tasks such as medical diagnosis.

In our system, we would like to classify the qualitatively different outcomes of

an agent’s actions, without knowing them in advance. The first hurdle for our sys-

tem to overcome if we are to adapt existing machine classification algorithms is the

requirement that outcome classes be known a priori. We maintain that an agent

does not begin life knowing that moving may result in crashing or pushing or any

other type of experience. An agent can make only basic sensory distinctions, such as

the distinction between moving and stationary, or increasing and decreasing. These

simple distinctions can then be combined in various ways to identify the qualitative

differences between different experiences.

A direct approach would be to specify the native sensor distinctions an agent can

make and use these primitive distinctions as a priori class labels. Then, we build

feature detectors for them. The task of classifying outcomes can then be posed as a

supervised classification problem. In previous related work, we devised an algorithm

for the induction of context operator difference tables [74] (CODTs). The CODT

structure is similar in spirit to the operator difference table[59] of classical problem

solving, a structure that relates actions to their effects on the environment. The

CODT introduces an obvious difference: the CODT can encode conditional operator

effects. The algorithm asks the question: “Given the sensory configuration at the

outset of an activity, does sensor s increase, decrease, or stay stationary?” The

CODT induction algorithm applies a simple feature detector (one that can detect

increasing and decreasing trends) to sensor data in order to generate primitive class

labels for sensor behavior (increasing, decreasing, or neither). Once the algorithm has
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labeled sensor trends, a supervised algorithm can be used to generate the contexts

(which correspond roughly to initial conditions).

The learning procedure, in greater detail, is as follows: First, the agent selects

an action to explore. Next, it records a snapshot of readings from its sensors, which

we call the context, C, in which the action is taken. Then, the agent initiates the

action, and continues to record its sensor readings for the duration of activity, which

we call the effects, E , of the activity. The result is a context/effect pair (C,es) for each

sensor s in E . The agent repeats this process, and when a handful or experiences

have been recorded, it generates a decision tree for each action/sensor pair using

the collected (C,es) tuples. Each tree becomes a cell of the CODT, which, like the

operator difference table, describes the expected change in each sensor given an action

and a context. A typical CODT tree might assert that the move activity will produce

an increase in translational velocity unless the bump sensor is active, in which case,

translational velocity will remain stationary.

Our experience with CODT induction was that reasonably predictive models could

be generated, and those models illuminated basic structure of the environment: that

sonars were predictive of collisions, that visual cues could predict objects entering

the gripper of the Pioneer, and so on. The CODT work also underlines an important

trade off associated with supervised classification algorithms. One must be careful not

to choose class labels that are too specific (enumerating the entire space of different

outcomes of an action, for example), thereby attempting to express too much. When

the set of class labels becomes too specific, the engineering task of pre-specification

becomes more difficult, and the amount of data required to fill out representations

can become prohibitive. At the same time, one must not choose labels too general

(like those used in CODT induction) and express too little for the representations

to be useful to downstream components. While the CODT induction algorithm was

successful at classifying slope changes in sensors associated with the onset of activity,
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we felt that it might not provide a requisite level of predictiveness for planning. More

importantly, dependencies between the sensors could not be expressed, nor could

they typically be inferred from the CODT. One could not predict how sets of sensors

would change in response to action. In typical environments, dependencies among the

various sensors are prevalent. Planners must be able to account for dependencies like

these. The apparent lack of expressiveness in the CODT approach led us to the next

body of work we will describe, in which no attempt is made to coerce the classification

problem into a supervised task; instead, we approach outcome classifcation as an

unsupervised task.

Unsupervised classification refers to a class of learning algorithms in which neither

the set of class labels nor the criteria for class membership are known in advance.

Clustering algorithms partition data into groups that are judged homogeneous by

some distance metric [21]. Each of the groups produced by the clustering algorithm

is considered to correspond to a class.

Typical clustering algorithms produce hierarchical groupings by computing inter-

datum distances and repeatedly dividing or merging partitions of data based on the

distances between them. Those algorithms that work by dividing larger partitions

into smaller ones are called divisive while those that are based on merging partitions

are called agglomerative. For a simple dataset, such as the two-dimensional dataset

shown in figure 2.1a, Euclidean distance can be used as a basis for building clusters.

These algorithms split or merge clusters recursively until some threshold is met, which

may be that a desired number of clusters has been generated, or that a maximal

intra-cluster variance has been reached. The partitions at the leaves of the hierarchy

built during clustering may then be assigned cluster labels. Figure 2.1 shows 6 two-

dimensional data plotted on X-Y axes (a), a hierarchical clustering carried out to a

threshold of 3 clusters (b), and a graphical representation of those clusters (c).
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Figure 2.1. (a) Two data and their Euclidean distance. (b) A group of data and
one possible clustering based on the Euclidean distance metric. (c) The clustering,
interpreted graphically.

A variety of clustering algorithms exist for the continuous valued, multivariate

clustering problem, including Cobweb [24], Autoclass [10], and Snob [85]. These

systems have a track record of finding class structure in data when possible class

labels are not initially known. Still others have extended clustering technology to

produce clusters of time series [40, 90, 69]. Distance-based clustering algorithms can

solve many classification problems so long as an appropriate distance metric can be

found. A suitable distance metric for comparing the sensory time series like those

found in our agents’ experiences would allow us to use a simple clustering scheme to

collect experiences into groups with qualitatively similar outcomes.

We now turn to a detailed description of a clustering system we developed for

identifying qualitatively different action outcomes for the Pioneer mobile robot.

2.1.1 Identifying Outcome Classes by Clustering

Clustering algorithms comprise three components. The first is the mechanism by

which data are either merged into clusters or clusters are divided into smaller ones.

The second is the distance metric by which data are judged as similar or dissimilar.

The final component is a set of stopping criteria which signal to the algorithm that

it should stop dividing or merging clusters.
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The most significant undertaking in our application is to define a measure of

similarity for the experiences of a mobile robot. Finding such a measure of similarity

is difficult because experiences that are qualitatively the same may be quantitatively

different in at least two ways. First, they may be of different duration, making it

difficult or impossible to embed the time series in a metric space and use something

like Euclidean distance to determine similarity. Second, within a single time series,

the rate at which sensors change can vary non-linearly. For example, the robot may

move slowly or quickly toward a wall, leading to either a slow or rapid decrease in the

distance returned by its forward-pointing sonar. In each case, though, the end result

is the same, the robot approaches the wall and then bumps into it. Such differences

in rate make similarity measures such as cross-correlation unusable.

The measure of similarity that we use is Dynamic Time Warping (DTW) [72].

DTW is a generalization of classical algorithms for comparing discrete sequences

(e.g. minimum string edit distance [13]) to sequences of continuous values. It has

been used extensively in speech recognition, a domain in which the time series are

notoriously complex and noisy, until the advent of Hidden Markov Models which

offered a unified probabilistic framework for the entire recognition process [37].

E2

E1

Figure 2.2. Two time series, E1 and E2, (the leftmost column) and two possible
warpings of E1 into E2 (the middle and rightmost columns).

Let E denote an experience, a multivariate time series containing n measurements

from a set of sensors such that E = {et|1 ≤ t ≤ n}. The ei are vectors of values
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containing one element for each sensor. Given two experiences, E1 and E2 (more

generally, two continuous multivariate time series), DTW finds the warping of the time

dimension in E1 that minimizes the difference between the two experiences. Consider

the two univariate time series shown in figure 2.2. Imagine that the time axis of E1 is

an elastic string, and that you can grab that string at any point corresponding to a

time at which a value was recorded for the time series. Warping the time dimension

consists of grabbing one of those points and moving it to a new location. As the point

moves, the elastic string (the time dimension) compresses in the direction of motion

and expands in the other direction. Consider the middle column in figure 2.2. Moving

the point at the third time step from its original location to the seventh time step

causes all of the points to its right to compress into the remaining available space,

and all of the points to its left to fill the newly created space. Of course, much more

complicated warpings of the time dimension are possible, as with the third column in

figure 2.2 in which four points are moved.

Given a warping of the time dimension in E1, yielding a time series that we will

denote E ′1, one can compare the similarity of E ′1 and E2 by determining the area

between the two curves. That area is shown in gray in the bottom row of figure 2.2.

Note that the first warping of E1 in which a single point was moved results in a

poor match, one with a large area between the curves. However, the fit given by

the second, more complex warping is quite good. In general, there are exponentially

many ways to warp the time dimension of E1. DTW uses dynamic programming to

find the warping that minimizes the area between the curve in time that is a low

order polynomial of the lengths of E1 and E2, i.e. O(|E1||E2|). DTW returns the

optimal warping of E1, the one that minimizes the area between E ′1 and E2, and the

area associated with that warping.

The area is used as a measure of similarity between the two time series. Note that

this measure of similarity handles nonlinearities in the rates at which experiences
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progress and is not affected by differences in the lengths of experiences. In general,

the area between E ′1 and E2 may not be the same as the area between E ′2 and E1.

We use a symmetrized version of DTW that essentially computes the average of those

two areas based on a single warping. [44] Although a straightforward implementation

of DTW is more expensive than computing Euclidean distance or cross-correlation,

there are numerous speedups that both improve the properties of DTW as a distance

metric and make its computation nearly linear in the length of the time series with a

small constant.

The identification of an appropriate, effective distance metric facilitates the use of

a variety of clustering mechanisms. We have implemented an agglomerative, group-

average distance clustering algorithm. The algorithm works as follows. First, begin

by computing a m×m distance matrix D, where the contents of cell Di,j contains the

distance between experience Ei and Ej, computed using DTW. Next, the algorithm

creates a cluster Ci for each individual experience, and greedily chooses the pair

of clusters with the lowest group-average distance, calculated as the average of the

distances between experiences in Ci and those in Cj.

GAD(Ci, Cj) =

∑

cx∈Ci

∑

cy∈Cj
Dx,y

|Ci||Cj |

(2.1)

This simple clustering algorithm continues until the stopping criterion is met. In

many cases, the stopping criterion is simply that the algorithm has merged down

to a prespecified number of clusters. For our purposes, this is unreasonable; are we

to assume that the robot has innate knowledge of the number of distinctly different

outcomes of an action? Instead, we have devised an automatic stopping criterion

based on the t-test. Merging continues until the best candidate clusters for merging
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have a mean inter-cluster distance that is significantly different than the mean intra-

cluster distance as measured by a t-test, with a user-adjustable p value.

To evaluate the clustering algorithm, we collected sensor data from 2 sets of ex-

periences: 102 experiences with the robot moving forward or backward in a straight

line, and 50 experiences with the robot turning in place. Clustering for both the turn

and move sets was performed on two sensor subsets: one which includes the velocity

encoders, break beams, and gripper bumper (which we will call the tactile sensors),

and one which includes data from the Pioneer’s vision system, including the X and

Y location, area, and distance to a single visible object being tracked (which we will

call the visual sensors). Visible objects and objects that impeded or obstructed the

robot’s path were present in many of the trials.

As we would like clusters to correspond directly to relevant outcomes of activity,

our primary means of evaluating cluster quality is to compare them against clusters

generated manually by the experimenter who designed the 152 robot experiences.

Post-hoc labels assigned to the hand-built clusters are summarized in table 2.1. In

the visual tracking problems, the clusters correspond to visible objects’ relations to

the agent during activity; the object may move across the visual field while turning or

it may loom while being approached. In the tactile problems, clusters correspond to

the Pioneer’s velocity and the types of contact made with objects in the environment

during the activity; heavy objects halt the Pioneer’s progress, and are labeled “crash”,

while light, small objects merely trigger the break beams and are labeled “push”.

We evaluate the clusters generated by DTW and agglomerative clustering with a

2× 2 contingency table called an accordance table. Consider the following table:

te ¬te

tt n1 n2

¬tt n3 n4

We calculate the cells of this table by considering all pairs of experiences ej and ek,
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move/tactile turn/tactile move/visual turn/visual
+250 unobstructed +100 unobstructed no object no object
+100 unobstructed +100 never stops heavy noise can’t move
-100 unobstructed +100 bump approach on right pass left to right
-250 unobstructed +100 blocked approach disappear pass right to left
+250 temporary bump +100 temporary bump discover left reverse discover right
+100 temporary bump +100 blocked bump vanish on right discover left
+250 push delayed bump -100 unobstructed vanish on left left to right
+250 delayed bump -100 temporary bump retreat left vanish off right
+100 delayed bump -100 impeded turn discover right vanish off left
+250 crash beam1 -100 blocked approach ahead
+250 squash approach, gets big
+250 push blocked approach on left
+250 push approach, stays small
+100 push
+100 push shallow
+100 blocked
-100 blocked

Table 2.1. Outcome labels given to the hand built clusters for each of the 4 experi-
ence sets.

and their relationships in the target (hand-built) and evaluation (DTW) clusterings.

If ej and ek reside in the same cluster in the target clustering (denoted by tt), and

ej and ek also reside in the same cluster in the evaluation clustering (denoted by te),

then cell n1 is incremented. The other cells of the table are incremented when either

the target or evaluation clusterings places the experiences in different clusters (¬tt

and ¬te, respectively).

Cells n1 and n4 of this table represent the number of experience pairs in which the

clustering algorithms are in accordance. We call n1+n4 the number of agreements and

n2+n3 the number of disagreements. The accordance ratios that we are interested in

are n1

n1+n2
, accordance with respect to tt, and

n4

n3+n4
, accordance with respect to ¬tt.

Table 2.2 shows the breakdown of accordance for the combination of dynamic time

warping and agglomerative clustering versus the ideal clustering built by hand. The

column labeled “|Ct|−|Ca|” indicates the difference between the number of hand-built

and automated clusters (a negative value indicates fewer clusters in the automated

case. In each problem, the automated algorithm clustered more aggressively, re-
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sulting in fewer clusters. The columns that follow present the accordance ratios for

experiences grouped together, apart, and the total number of agreements and dis-

agreements.

The table shows very high levels of accordance. Ratios ranged from a minimum of

82.2% for experiences clustered together (tt) in the move/visual set to 100% for expe-

riences clustered together in the turn problems. For the turn problems, the aggressive

clustering may account for the high tt accuracy, causing slightly lower accuracy in the

¬tt case. Various techniques for increasing accordance further have been explored,

including post-hoc cluster optimization [63], and results are encouraging that this

clustering scheme can serve as the basis of an intelligent agent that can distinguish

experiences by their outcome.

|Ct| − |Ca| tt tt∧te % ¬tt ¬tt∧¬te % Agree Disagree %
Move visual -5 876 720 82.2 4275 4125 96.4 4845 306 94.0
Move tactile -7 443 378 85.3 4708 4468 95.0 4846 305 94.0
Turn visual -5 262 262 100.0 599 571 95.3 833 28 96.7
Turn tactile -6 163 163 100.0 698 593 85.0 756 105 87.8

Table 2.2. Accordance statistics for automated clustering against the hand built
clustering.

2.1.2 An Alternative Clustering Scheme

Distance-based agglomerative clustering has two fundamental shortcomings which

begin to surface as an agent accumulates experiences. First, it is sensitive to the

sample size it works with. The decision to merge two clusters is made based on a

t-test and a parameter α, a probability of incorrectly rejecting the hypothesis that

two experiences are generated by a different process. As the number of experiences

grows, the number of merging decisions grows exponentially, and consequently, the

probability of making a poor decision to merge also grows. When a poor decision to

merge is made, operator clusters become impure and any inferences made of cluster
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membership are polluted accordingly. This problem of systematic overfitting has

been studied by Cohen and Jensen [12]; adjustments can be made to reduce the

probability of error when the number of comparisons can be counted or estimated.

Still, this sensitivity to the number of experiences appears to manifest in our trials,

resulting in unnecessarily impure clusters.

The second fundamental shortcoming of clustering applied to our problem is that

distance-based clustering is only as good at building pure clusters as the distance

metric accurately measures similarity in the desired way. Dynamic time warping

is allowed to stretch and compress the temporal dimension of two experiences to

optimize the distance between them. In some cases, DTW could compress what we

as observers would consider interesting regions of experiences (regions where there

is substantial, discernible behavior in the time series data) down to a tiny temporal

extent in order to reduce its distance to an experience in which there was very little

interesting behavior. Figure 2.3 shows a situation typical of the type of time series

data we are working with. The figure shows sensor traces for two distinctly different

experiences: one in which the sensor starts high and goes low, one in which the sensor

starts low and goes high. This might be a sonar sensor as an agent approaches a wall

in one case and retreats from the wall in another. The DTW algorithm is able to

warp these two sequences to the point where they seem very similar.

In our trials, the result of these shortcomings was that clusters began to become

unacceptably noisy as the agent accumulated more and more experiences. They

began to fall out of accordance with human judgment as the faulty decisions to

merge previously distinct clusters into one larger supercluster are made. Impurity

complicates downstream portions of the system; initial condition induction becomes

problematic. The planner, which relies heavily on initial condition induction, suffers

accordingly.
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original series warped series

DTW difference

Figure 2.3. Two time series that are qualitatively different but can be manipulated
by DTW to appear similar by compressing the region over which there are dissimi-
larities.

After studying the failings of this clustering scheme, we arrived at a conclusion

that too many clusters, as long as they retain purity, is preferable to too few clusters.

This is because pure clusters are still useful for prediction. It is better to have two

useable clusters when there should be one rather than one polluted cluster when there

should be two. The combination of DTW and agglomerative clustering was prone

to overly-aggressive merging, and thus too few clusters. We found the connection

between the complicated distance metric and the eventual results was too opaque to

produce acceptable results in the general case; we did not have fine enough control

over the algorithm to arrive at a solution we felt would produce pure, useful operator

models that would scale to large numbers of experiences. Eventually, we returned

to the idea underlying the CODT work and redevelop the approach of using simple

feature detectors to produce grounded class labels and blend in some of the aspects of

agglomerative clustering that we felt provided an advantage over the CODT system.

We developed a simple clustering algorithm that utilizes feature detectors similar

to the one used in the CODT work as a basis for building clusters. The goal of this

algorithm was not to be sensitive to sample size and to most probably build too many

clusters than too few. We call this algorithm the simple symbolic clusterer, and it is
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based on the following idea: for the purposes of planning and acting, “interesting”

regions of time series are those in which there is a non-zero slope and the behavior

of the time series is relatively predictable. By identifying portions of time series in

which there is an identifiable, consistent nonzero slope, we can reduce a large amount

of data to a small sequence of segments (or features).

Each individual interesting segment can then be classified and labeled. The al-

gorithm essentially processes time series sensor traces into a sequence of labeled seg-

ments, or simpler still, symbol strings. For the simple symbolic clusterer, those expe-

riences whose symbol strings match, exactly, belong to the same cluster. The actual

mechanisms for segmenting and classifying segments are purposely left vague at this

point, since many candidates produce more or less detailed results. We discuss several

we have implemented below. The key to this new suite of algorithms is that the deci-

sion to merge clusters is deterministic. If feature detection is also deterministic (this

depends on the individual detectors), then the entire classification system becomes

deterministic and scalable. It will produce the same clusters, every time, no matter

how much data.

A number of approaches to feature detection are possible. We call the various

feature detection schemes filters. They vary in their level of detail and features that

they attend to. We now present three variants of the simple symbolic clusterer that

retain different levels of detail in the representations they produce. We revisit the

question of what is the right level of detail for our purposes once the remainder of

the modeling system is described in section 2.2.3.

The ssc1 Clusterer

The first outcome classification filter we describe is called the ssc1 clusterer. It

retains the most detail from the data of the three variants. The ssc1 algorithm

uses piecewise linear regression to break time series down into regions where the

rate of change remains fairly uniform.
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We employ a top-down piecewise linear fitting algorithm that works as follows.

Given a time series of length n, find the cut point j that maximizes the difference

in slope between the regression line computed over the range of data in [1 . . . j]

and the regression line for [j + 1 . . . n]. Next, test the hypothesis that the two

lines have the same slope. In essence we are testing whether the trends of

the two ranges of data were produced by the same process. The mathematics

behind this test are the same as the ones that were used in the context operator

difference table induction scheme described in section 2.1. They are described

fully in [74] and summarized in Appendix A. If the hypothesis cannot be

rejected, the algorithm does no splitting, fits a single regression line to the

data, and is finished. If the hypothesis is rejected, then j is marked as a split

point, and the piecewise fitting algorithm is recursively called on the two data

sets created by splitting the data about j.

The piecewise fitting algorithm breaks a time series down into line segments,

each of which has a distinct slope and intercept, and a goodness of fit for the re-

gression line to the data it fits. We use the slope and goodness of fit to then label

each segment. Segments can be classified as increasing, decreasing, stable,

or unstable. The first two classifications refer to positive and negative slopes,

while the second two refer to slopes near zero where the fit is good (stable) or

there is great variance in the data, and the fit is poor (unstable). These class

labels can be arrived at in a variety of ways; they are currently assigned by a set

of fixed rules, specified in advance, and tailored to the characteristics of each

sensor. The ability to detect these features in sensor data could be considered

an innate endowment of our agent. We also add two additional segment labels,

disc- and disc+, for identifying discontinuities in the data. Discontinuities are

simply places in the data where a very large change is encountered in a short

temporal window. Since discontinuities are not handled well by piecewise linear
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cluster−suu

cluster−susds
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Figure 2.4. An illustration of the ssc1 clusterer.

fitting algorithms, they are detected by a hand-built filter and are marked as

cut points prior to applying the fitting algorithm.

Each sensor series can now be characterized by a string of symbols. Since we

are most interested in when and how the sensor change, we trim segments of

the type (stable or unstable) from the beginning and end of a time series.

Now each series is described by a symbol string that encodes the “interesting

part” of the activity that generated it. Series described by the same symbol

string can simply be clustered together, and by extension, experiences whose

symbolic descriptions match for every sensor, are grouped together.

An illustration of the clustering algorithm is shown in figure 2.4. Along the left

hand column are several time series. The second column shows typical piecewise

linear fits to each of the original time series. The third column shows symbolic

representations of the piecewise fits, and the fourth column shows the final

step of clustering series with the same symbolic representations together. This

simple illustration shows clustering for the univariate case. It extends simply

to the multivariate case.

The Delta-Simple Clusterer
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Figure 2.5. An illustration of the Delta-Simple clusterer.

The Delta-Simple clusterer takes the simplicity of the ssc principle to the

furthest degree. The idea with Delta-Simple is that an action will either have

some effect on a sensor, to increase or decrease its value, or it will not. The

“shape” of the sensor time series, or precisely how it behaves during the action,

is unimportant compared to the net result of the action in this scheme.

The symbolic description of a sensor time series under Delta-Simple is ei-

ther increases, decreases, or nc (no change). The symbolic description is

computed simply by comparing the state of a sensor before an action is taken

with the state when the action is completed. Like ssc1, the thresholds for the

classes are hand-coded specific to the various sensors, but could be learned in-

ductively. Experiences whose symbolic sensor descriptions match exactly are

grouped together.

An example of the Delta-Simple clustering algorithm is shown in figure 2.5.

It differs from the ssc1 algorithm in the second and third columns where the

symbolic representation is derived. Instead of a piecewise linear fit, a simple

comparison is made to arrive at a value for ∆. If ∆ is significantly different

that 0, the series is labeled up or down, otherwise it is labeled no change.
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The Delta Clusterer

The Delta filter is a straightforward extension of the Delta-Simple filter.

Like Delta-Simple, this filter computes net sensor changes over the course

of an activity and classifies it by whether the value goes up, down, or does

not change. The Delta classifier, however, retains information of scale. If

a sensor goes up by 3 units, it will classify the change as up3, for example.

This allows Delta to make distinctions between outcomes in which the rate

of change is significantly different. In our example, the number 3 is an integer,

but the granularity of the Delta filter is not limited to integer values, and

could be dependent on the characteristics of the sensor being monitored. The

Pioneer-2’s sonar sensors might work at a granularity of 1000mm; an activity

that moves the Pioneer 1900mm closer to a wall might be classified as down2.

Again, the granularity of Delta on individual sensors is hand-coded in our

system, but these values could be configured adaptively. An illustration of the

Delta clusterer is shown in figure 2.6.

The Delta clusterer’s operation is illustrated in figure 2.5. It differs from

the Delta algorithm in the third column where the symbolic representation

is derived from the ∆ computation. The additional information of scale is

incorporated into the labels up3 and down1.

2.2 Initial Condition Induction

Given a classification scheme that groups experiences into clusters with qualita-

tively similar outcomes, we can go on to ask the question “under what circumstances

can outcome o be expected to unfold?” For example, if we are dealing with the

Pioneer robot, one might want to determine why moving in one instance results in

unimpeded progress while in another the result is crashing into a wall. The answer to

this question serves two purposes: First, the answer provides predictiveness. Reactive
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Figure 2.6. An illustration of the Delta clusterer.

control requires that an agent can predict the outcomes of its actions. Second, the

answer provides information that can be used as a basis for means-ends analysis.

Before we address the problem of generating predictive models, and show how

our models can be used to approximate preconditions, it is worth expounding on

the subtle distinction between preconditions used by classical planners and initial

conditions, which is what our system produces. When an agent like the Pioneer is

considering which outcome an action will produce, it has only its sensors to guide it.

When it considers what will happen if it executes the move action, it can access its

vision system, its sonars, and its internal state sensors. It does not have the benefit

of rich representations of the world to tell it that it is facing a wall as opposed to

a trash can. It can only associate sensory states with outcomes: a small red object

in the visual field is most closely associated with cluster c1 unfolding, while a large

blue object is associated with cluster c5 unfolding. Whereas with classical planning

operators, the link between preconditions and postconditions is causal, we cannot

assert a causal relationship. Our system can only claim an associative relationship.

Another way of looking at the distinction between preconditions and initial condi-

tions is as follows. Preconditions, in the classical planning sense, tell the planner two
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things. They tell the planner what the probability of an outcome is given that some

conditions are satisfied. They also tell the planner the probability of that outcome if

the conditions are not met. Preconditions are necessary and sufficient conditions for

an operator to succeed. Initial conditions, on the other hand, make a weaker state-

ment about the agent and its environment. They do express the probability of an

outcome given a set of conditions, but they do not express the probability of failure

when the conditions are not met. They can express sufficiency, but not necessity. For

our practical purposes, sufficiency is adequate.

Let us call the sensory information collected during the γ seconds leading up

to the initiation of an activity the precursor phase of that activity. We call the

vector of mean sensor values across all available sensors in the precursor phase of

an experience the precursor to that experience. Initial conditions, then, should be

specified as propositions over precursor sensor values. A Pioneer robot agent might

posit initial conditions for an activity called lift-red-object to be

((vis-a-area∈ [100. . .1000]) ∧ (grip-beam∈ [0.5. . .1.0]))

indicating that the area of the blob in visual channel A must be nonzero (i.e. that

there actually is a red object in view), and the gripper beam must be broken (the

object must be within the grasp of the gripper).

The problem of initial condition induction, then, is one of learning a mapping

between the precursor of an experience and its class label. Since we now have a

class label for each experience of the robot (generated via the outcome classification

step), we can go about the task of attempting to learn these maps. Again, there

is a large body of literature in the field of machine classification that is all relevant

to this problem. In the two sections that follow, we examine two major schools of

machine classification and their applicability to our particular system: artificial neural

networks and inductive methods.
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Figure 2.7. A neural network designed to learn how to classify experience outcomes
based on their initial sensory states.

2.2.1 Relevant Work: Artificial Neural Networks

Artificial neural networks first emerged in the AI literature as an attempt to model

the behavior of neurons in the brain. McCulloch and Pitts pioneered the idea by

studying the behavior of a single neuron [53], and as computers became increasingly

capable, the technology expanded to modeling simple networks of neurons [61]. Since

that time, the scope and simulation of the neural units and networks has undergone

much development to reach the point where they have been shown to accomplish

a number of significant tasks, from reproducing arbitrary functions from data [16,

26, 33] to complex control tasks like driving a car [65] to machine classification [23].

An artificial neural network capable of learning a mapping from sensor readings to

outcome classes would certainly be satisfactory for predicting outcomes, and combined

with the ability to interpret the internal structure of a neural network in declarative

terms [15, 14], could also be a suitable technology for inducing initial conditions.

We ran set of pilot experiments to evaluate artificial neural networks as the un-

derpinnings of our initial condition induction system. Our initial experiments with

artificial neural networks as outcome predictors were run using data collected from the

Pioneer robot. Class labels were generated using our first-generation outcome classi-
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fication scheme: the combination of DTW and agglomerative clustering as described

in section 2.1. Recall that our DTW-based clustering system classifies outcomes with

respect to a group of sensors’ behavior. Thus, each cluster corresponds to an outcome

characteristic of the form “sensors si . . . sj conformed to pattern yi . . . yj”. For ex-

ample, the clustering scheme might generate clusters corresponding to the following

labels: “the front sonars decrease then leveled out” or “translational and rotational

velocity remained constant”. These examples are quite simple, but the combination

of DTW and clustering allow for arbitrarily complex patterns to be compared and

matched. Each sensor group has a corresponding set of clusters that represent the

qualitatively different outcomes observed from those sensors in the experience data.

The task was to train artificial neural networks to predict sensor outcome classes for

unclassified experiences using precursor data.

We implemented a multilayer artificial neural network architecture as shown in

figure 2.7. To train up the network, each experience in the training set was con-

verted to a training instance by pairing its vector of precursor sensor readings with

an outcome class label as prescribed by the clustering algorithm. We will refer to the

precursor vector of an experience as P , and the precursor value of sensor i as P (i).

The class label for an experience will be referred to as C, where C is a bit-vector.

The bit string C corresponding to experience e contains all zeros except C(j), where

if j is the jth bit of C, and C(j) = 1, then e belongs to cluster number j as labeled

by the DTW-based clusterer. Training experiences are then presented to the network

as pairs < P,C > and the neural network must learn a map from P to C. Each pass

through the training set is called a training epoch, and the network is updated using

the backpropogation algorithm [71] as many epochs as is necessary for the network

to stabilize (stop learning).

We tested the efficacy of this neural network for configurations containing 8 to

24 hidden units, using the representative set of 152 experiences as described in sec-
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Figure 2.8. Learning curves for a neural network trained to predict outcome classes
on Pioneer data for the tactile sensor group. Solid lines represent performance on
training data, dashed lines represent generalization to test data. Circles plot winner-
take-all performance, diamonds plot mean-squared error.

tion 2.1.1. We trained networks to predict the outcome classification for each of the

visual and tactile sensor groups (as described in section 1.1, plus clusters built using

the Pioneer’s seven sonar sensors. We allowed training to proceed until the mean

square error during training failed to change for 10 straight epochs.

After the training phase, the networks were tested both on the training data and a

set of test data consisting of 25 randomly generated moves and 25 randomly generated

turns classified by the clustering algorithm. Two representative learning curves from

the 24 unit network are shown in figure 2.8. Solid lines in the plots represent perfor-

mance of the network on the training data, while dashed lines represent generalization

to testing data. Plots marked with circles show winner-take-all (wta) performance.

In the winner-take-all task, the network is presented a feature set, computes its out-

puts, and the output with the highest activation level is the predicted class. The

winner-take-all score is 1 if the correct class is predicted, 0 otherwise. Those plots

marked with diamonds represent mean-squared error (mse). The mean-square error

measure is a raw measure of the mean difference between the outputs of the network

and the actual class vector of the test instance.
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The results shown in figure 2.8 are typical across the sensor groups and different

network configurations. The networks almost invariably converge on a configuration

that drives the mean-squared error to near zero. Winner-take-all performance is

considerably worse, even on training data. Generalization is poor in almost all cases,

but better in the turn condition. Classification (wta) error was in general very

high, ranging from 40% to 70% on the training set, while test set generalization was

far worse, averaging an error rate of more than 70%. A more detailed summary of

our results can be found in [73].

If neural networks can represent arbitrary functions, why did our experiments fail

to produce high levels of classification? There are several reasons that might have

contributed to the demise of the neural network:

1. The Pioneer domain is noisy, and partially-observable

2. The neural network was evaluated by a winner-take-all metric

3. Overfitting is a significant problem for the neural network formulation

4. Nondeterminism in the clustering algorithm propogates down to the prediction

task and hurts performance

5. Our choice of input or output representation, or our choice of network structure,

was not well suited for the task.

The poor performance of the neural network is most likely caused by a confluence

of some or all of the above problems. Consider the Pioneer mulling over the possibili-

ties of engaging in the turn action. Will a red object come into view? Will it become

stuck? If the Pioneer has nothing in its visual field, and is not already stuck, nothing

in the Pioneer’s sensor array can shed any light on this question. This is what is

meant by partial observability – the information relevant to predicting the outcome of

a turn action is simply not available to the Pioneer. When operating in a partially
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observeable domain, an agent has three choices. First, it can get better sensors and

attempt to swing its balance towards full observability. Second, it can maintain some

kind of memory, and add aspects of its memory into the modeling equation. Third,

it can make its predictions probabilistic and do the best it can. The first solution is

out of the question. We could engineer the entire problem away by building in better

sensors or an advanced perceptual system and controllers, if that was our goal. Or

goal is an account of development, though, and not stellar performance.

The second solution, a more sophisticated model of the environment in which

an agent can remember the locations and features of objects would surely make a

difference to the performance of a neural network, but we are not prepared to concede

these models as native, either. Neural networks able to revise their predictions as

time passes, such as time delay neural networks [48] and BPTT (back-propogation

through time) [89] would also likely get better results, but would require the agent to

engage in the activity for a period of time before a prediction could be made. This

is incompatible with most notions of planning, in which the agent generates several

steps of behavior in advance of starting execution. We want our agent to be able to

plot out an activity in advance, then execute it and store it for later reuse.

The most acceptable choice might be to take the probabilistic approach: given

the initial state, use the empirical distribution of observed outcomes to suggest what

might happen. There are examples that show artificial neural networks can be trained

to produce outputs that correspond to probabilistic estimates [6]. Revising the net-

work in this way would allow us to address the first two potential problems in our list.

Likewise, the fourth problem could be addressed if we were to rerun these pilot expe-

riences with data from the ssc clusterers. There is significant literature dealing with

the choice of input and output representation as well as network structure to draw

from to incrementally refine a network that would perform better than our initial

experiment. Overfitting, however, appears to remain a problem for neural networks.
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Ultimately, the reason we would move away from neural networks would not be

overfitting or the frequent requirement that network structure be tuned and retuned

to succeed on a particular problem. The primary goal of this predictive component

of our system is to use the structure of the model to identify initial conditions. There

has been some work on interpreting the structure of a learned neural network [34, 55],

but for the vast majority of neural network learning algorithms, the primary goal is

prediction accuracy. The internal structure and whether it corresponds to knowledge

of how the mapping between input and output works in the real world is traditionally

not a priority to the developers of networks as long as predictive accuracy is high.

By contrast, we are most interested in arriving at models from which declarative

intitial conditions can be extracted, and it is important that they reflect the true

contingencies in the environment as closely as possible. For this purpose, dissecting

and interpreting neural networks is still a technology in its early stages, and for this

reason, we turn our attention towards inductive methods.

2.2.2 Relevant Work: Inductive Methods

Decision tree induction is one instance of an inductive learning mechanism that

produces predictive, declarative, and easily decomposable structures. While predic-

tiveness is normally the name of the game in machine classification, the latter two

characteristics are also highly desirable in our system. Decision tree structures have

naturally probabilistic interpretations as well, another key feature for our initial con-

dition induction mechanism. Among the many variants of decision tree induction

to choose from are: the trailblazer of decision tree induction, ID3 [67], the current

gold standard, C4.5 [66], an incremental tree building algorithm called ITI [83], and

systems that increase the expressiveness of the basic decision tree formulation such

as OC1 [57] and non-linear decision trees [35].
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The general decision tree induction algorithm works with data described by feature

vectors and class labels, as in our description of the neural network experiement of

section 2.2.1. Decision trees are built via a two-phase process. In the first phase, a

fully-elaborated tree is built. The tree is built by splitting the full set of data into

subsets according to a decision, which is a test on some feature in the training data.

Decisions are generally selected from the full set of possible tests greedily according

to which decision results in subsets with the greatest degree of purity, where purity is

a measure of homogeneity in the class labels in a set of data. The process is repeated

recursively on the subsets until all of the subsets are completely pure (containing only

data of a single class). The result of this first phase is a tree composed of decision

nodes that produce splits of the data and pure leaf nodes where branches in the tree

end. In the second phase, the tree is “pruned”. During pruning, leaf nodes are merged

bottom-up when the loss in purity is considered acceptable. The pruning phase is

intended to fight overfitting – superfluous structure in the decision tree – which can

hurt the prediction performance of a tree on unseen test instances.

We use an algorithm called TBA to generate decision trees in our system. TBA

has a unique treatment for the problem of overfitting in that it addresses overfitting as

a symptom of a systematic problem in any induction system that makes multiple, re-

peated comparisons. This problem of systematic error in algorithms making multiple

comparisons is explained fully in [12] and the treatment that TBA uses is described

in [38]. Since we intend to interpret tree structure as initial conditions to planning

operators, we have additional incentive to prevent superfluous structure from finding

its way into our decision trees. The results we describe in this section, and those that

follow, are all based on decision trees built using the TBA algorithm.

An example decision tree built on turn experiences clustered with respect to

the velocity sensors and bump encoders of the Pioneer-1 is shown in figure 2.9. The

experiences of the Pioneer-1 in this case have been hand labeled to correspond roughly



c©Matt Schmill 2003, preprint - do not distribute 61

to what happened through the eyes of a human observer as the Pioneer-1 took action.

These labels are used to classify the experiences into operators and as the class labels

for TBA to work with. The feature sets we use are precursor sensor readings, as

described in the setup for the neural network experiment in section 2.2.1. The tree

in figure 2.9 may be interpreted as follows: If the direction of rotation is clockwise,

the most likely outcome is an unobstructed turn, which has happened in 46% of all

clockwise turns. Other outcomes are possible, though less frequent, and can not yet

be differentiated by precursor data. If the direction of rotation is counter-clockwise,

then the outcome depends on whether or not the gripper beams are broken (whether

or not something is in between the gripper paddles). If there is, 100% of all prior

experiences indicate that the robot will be stuck. This represents the situation where

the Pioneer-1 has moved upon a chair or table leg that prevents the robot from

turning. If there is nothing in the gripper, then one of four outcomes is likely, the

most likely being an unobstructed turn, having been observed 67% of the Pioneer-1’s

experiences.

This decision tree reflects some of the observable structure of the Pioneer-1’s envi-

ronment. In particular, the agent has represented that if it happens to get something

in its gripper beams (such as a table leg), it is likely to not be able to turn. It cannot

yet make finer distinctions. It cannot tell a table leg from a soda can, for instance.

These objects can probably be disambiguated by the sensors, but with its current

data, the disambiguiating features have not yet been learned. Likewise, if it isn’t

already stuck (something immovable whithin its gripper), the Pioneer-1 can only ex-

press that there is a chance it might become stuck. Since the Pioneer-1 cannot sense

potential obstacles if they are behind the robot, it cannot represent with certainty

the conditions under which it is most likely to become stuck.

The Pioneer is faced with the task of learning initial conditions in a partially-

observable, probabilistic, dynamic environment. The best this agent can do in many



c©Matt Schmill 2003, preprint - do not distribute 62

free turn (46%)
no effect (19%)
premature halt (16%)
temporary bump (5%)
stalled (5%)
+bumper temporary (3%)
+ free (3%)
impeded turn (3%)

+ free (67%)
+ never stops (21%)
premature halt (8%)
+ bumper (4%)

[clockwise][counter-clockwise]
Direction

gripper-beam
[off][on]

+ stopped (100%)

Figure 2.9. A decision tree generated using Pioneer-1 precursor phase data from
clusters built on tactile data during turn experiences. Cluster labels, along with their
relative frequency, are italicized at the leaves.

difficult situations is express what it has experienced probabilistically; that in 16%

of prior clockwise turns, a pattern corresponding to an obstruction was encountered,

or more simply, that this pattern is a possibility when turning. In other cases, the

sensors of the Pioneer can make important distinctions with greater certainty. The

gripper beam can distinguish a situation where free movement is most likely from

one in which being stuck is most likely. A tree generated from move experiences,

clustered with respect to visual channel A (which tracks objects that are red in

color), is shown in figure 2.13. The tree is significantly more complex than the

turn tree because finer distinctions are possible from the data, and as a result the

tree is able to make stronger statements about actions and their probable outcomes.

Greater differentiation is possible in this tree by using visual cues available in the

precursor phase, and by making distinctions between what is possible when moving

forward (objects disappearing from view) as opposed to backwards (objects appearing

in view).

Whether fine distinctions can be made or only coarse ones, we have found that

decision trees are better suited to our particular task than their neural network coun-
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terpart. This is because their structure is completely transparent and can be easily

transformed into probabilistic propositions over the state space. It is unlikely that the

performance of decision trees will be better in any or all cases, but for our purposes, it

is more important that the structure of the models be easily made available to other

components of our developmental system.

2.2.3 Closing the Modeling Loop

After our review of work relevant to our modeling needs, as well as some develop-

ment of our own, we settled on the combination of the simple symbolic clusterer to

handle outcome classification and a decision tree algorithm (TBA) to handle initial

condition induction. In this section, we will describe in detail how this tandem works

and how the modeling system handles its job as an oracle to the other developmental

components. For clarity, we will shift gears in this section, and use the GridSim

simulator as described in section 1.1.1 in a running example.

We have not described in detail either the motivational system or the planner,

but assume for the sake of this discussion that the motivational system is somehow

selecting goals for the planner. As a part of the planning to act scheme, the motiva-

tional system at times will query the modeling system to evaluate its options. The

motivational system will ask the following questions:

1. What outcomes am I allowed to choose from?

2. What is the most likely outcome of action a in the state that I am in?

The reasons why the motivational system will pose these questions to the modeling

oracle will become clear when we consider the motivational system in detail. In

short, the motivational system simply needs to enumerate potential goals and use the

answers to these questions to decide among them.

The planner, as part of its job, will also need information from the modeling

system. In particular, it will ask the oracle of modeling the following question:
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Figure 2.10. A GridSim experience: moving west.

1. What are the initial conditions for outcome o?

Let us consider how these three questions are answered by the modeling system

in the context of a running example of an agent acting in the GridSim environment.

At the outset, the agent has no experiences, and so neither the planner nor the

motivational system have any reason to influence the behavior of the agent. This will

end very soon once the agent has one or two experiences, but the first few experiences

of the agent are for practical purposes selected randomly. The agent picks an action,

executes it, and collects the experience. Let us assume that the agent moves west.

The sensor behavior for all 16 GridSim sensors for this experience are shown in

figure 2.10.

Once the experience is established, the outcome classification scheme churns out a

symbolic description. Suppose our agent is using the Delta-Simple filter. Looking

at figure 2.10, we note that ncam-color goes down, ncam-shape goes up, and so on.

The complete listing of the sensors and their Delta-Simple description, are listed

in table 2.11.

A convenient shorthand for outcomes described with the Delta-Simple filter is

to use a single letter abbreviation for each sensor trend, separated by dashes, in the

order presented in figure 2.11. The following string is shorthand for our agent’s first
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(bay-shape nc) (bay-color nc)

(n-camera-color down) (n-camera-shape up) (n-camera-dist nc)

(e-camera-color nc) (e-camera-shape nc) (e-camera-dist down)

(s-camera-color nc) (s-camera-shape nc) (s-camera-dist nc)

(w-camera-color up) (w-camera-shape up) (w-camera-dist nc)

(ccs-shape down) (ccs-color down)

Figure 2.11. A Delta-Simple outcome description for the experience of figure 2.10.

experience. The first two characters correspond to the two bay sensors, then the

north camera sensors, followed by the east, south, and west cameras, and finally, the

ccs sensors:

N-N-D-U-N-N-N-D-N-N-N-U-U-N-D-D

At this point, the modeling system can answer the motivational system’s first two

questions: what are the outcomes I have to chose from? and what is the most likely

outcome of action a?, so long as a is move-w. The answer to the first question will

always be the set of all unique Delta-Simple labels. There is only one at this point,

so it is not much for the motivational system to work with yet. The most likely

outcome of move-w will simply be the only thing that it can predict, which is the only

outcome it has observed. Answering this question, along with the others, becomes

more interesting when there is more than one experience for the modeling system to

work with.

Decision trees generally need 20-30 training instances to become useful in discrim-

inating outcomes. From the motivational system’s perspective, up until this point,

most activities appear to be equally appealing to engage in. From the planner’s per-

spective, operator models are hopelessly inadequate until this point, and so planning

is an exercise in futility. So, for all practical purposes, the system will more or less

wander, much like it did to generate its first experience, until discrimination starts

becoming possible. Let us assume the agent behaves in this fashion through 100

experiences, more or less uniformly distributed among the agent’s 6 actions.
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NCAM−DIST
[< 1.5][1.5 .. 2.5][> 2.5]

N−N−N−N−N−N−N−N−N−N−N−N−N−N−N−N (2)

N−N−D−D−U−N−D−U−N−N−U−N−N−N−U−U (1)

N−N−D−D−U−N−N−N−N−N−U−U−D−U−U−U (1)

N−N−N−N−D−D−D−U−N−N−U−D−D−U−N−N (3)

N−N−N−N−D−U−U−D−N−N−U−N−U−D−N−N (1)

N−N−N−N−D−D−D−U−N−N−N−D−D−U−D−D (1)

N−N−N−N−D−N−N−N−N−N−U−N−N−N−N−N (8)

N−N−N−N−D−N−N−N−N−N−U−N−D−U−N−N (2)

N−N−N−N−D−N−N−N−U−U−D−N−N−N−N−N (1)

Figure 2.12. A classification tree built on 20 GridSim experiences moving north.

A sampling of 100 experiences in the GridSim simulator might come up with 10-

20 instances of each of the six actions. Suppose the motivational system asks about

the most likely outcome of an action, for example, move-n, now. The modeling system

would build a decision tree on all move-n experiences as described in section 2.2.2. A

sample tree built on 20 such experiences is shown in figure 2.12. Note that the model

already makes an important distinction: whether or not something is directly to the

north of the agent before it moves in that direction. This case corresponds to the

leftmost branch in the tree of figure 2.12, where the north camera spots an object less

than 1.5 units away before moving. The outcomes along that branch represent the

outcomes possible when moving toward an occupied cell: the first outcome represents

impeded movement, and the second two represent instances of moving into a cell

occupied by debris, as evidenced by the ccs sensor going up (the last two symbols in

their description are U). However, in total there are only 4 experiences of this type,

and so the modeling system cannot differentiate moving into a wall from moving over

debris at this time. Once it has more instances down this path in the tree, it will split

these experiences, most likely using the ncam-shape sensor to differentiate hitting a

wall from moving over debris.

Using this tree, the modeling component can predict the most likely outcome. It

does this by following the path through the tree matches the current state. If the
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sensor ncam-dist was reporting a value of 4, for example, the current state would

correspond to the rightmost branch in the tree. Therefore, the modeling system would

be able to select the most prevalent outcome in that leaf as the most likely outcome.

In this case, the result is the outcome in which ncam-dist goes down, scam-dist

goes up, and no other sensors change:

N-N-N-N-D-N-N-N-N-N-U-N-N-N-N-N

When trees are built on relatively little data, as in our tree of 20 experiences,

and often in domains where outcomes are probabilistic or difficult to disambiguate

with the available sensors, the correct move for the modeling system is to predict the

outcome which has been observed the most in the current context. But these trees also

allow the modeling system to make a different kind of prediction. Rather than asking

for the most likely single outcome, the modeling system can make sensor-by-sensor

predictions. Take, for example, the rightmost branch of figure 2.12. Suppose that a

subsystem like the planner is interested only in what will happen to the current cell

sensor, represented by the last two symbols in each experience description. In every

instance in this leaf, the ccs shape and color remain unchanged. The modeling system

is relatively certain that in this context, the ccs will remain unchanged. More certain,

in fact, than it is that the outcome N-N-N-N-D-N-N-D-N-N-N-N-N-U-N-N will occur.

In fact, the bay sensors never change, the north camera shape, color, and distance

sensors report N, N, and D 100% of the time as well. Using this information, the

modeling system can produce a generalized outcome as its prediction. The generalized

outcome that corresponds to the rightmost leaf, if we only include sensors that have

always been observed to change the same way, is as follows:

N-N-N-N-D-N-N-N-?-?-?-N-?-?-N-N

This generalized operator asserts that the bay and ccs sensors do not change. The

north facing camera shape and color, similarly, are not expected to change but the
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distance to the north is projected to decrease. The east camera will show no changes,

and the color to the south will not change. The west camera and south camera shape

and distance vary from experience to experience in the leaf, and so in the generalized

operator, these are marked with ?, indicating that these sensors are for practical

purposes unpredictable.

So, these trees can answer the question “what is the most likely outcome of ac-

tion a, now, in two ways. It can predict a fully instantiated outcome, along with an

estimated frequency of the prediction given the current state. Alternatively, the mod-

eling system can make sensor-by-sensor predictions that meet a minimum probability

threshold in the form of generalized operators.

These same trees can be used to generate initial conditions for arbitrary outcomes.

Extracting the initial conditions for some outcome o from a decision tree works as

follows. First, find each leaf that contains one or more matches for o. For each such

leaf, build a proposition by tracing a path to the root of the decision tree and taking

the conjunction of all the decisions along that path. The initial conditions for o are

taken to be the disjunction of each path through the tree, each of which corresponds

to a conjunctive clause.

A simple example can be taken from the tree of figure 2.12. Suppose we want

the initial conditions for N-N-N-N-D-N-N-D-N-N-N-N-N-U-N-N. That outcome can be

found in the rightmost leaf of the tree (and in no other leaves). The path back to the

root contains a single decision, and the initial conditions based on this tree, at this

stage of development, would be:

(ncam-dist > 2.5)[72%]

This simply states that if ncam-dist is greater than 2.5, there is an estimated

probability of 72% that the desired outcome will occur. A considerably more complex

set of initial conditions can be extracted from a tree built on Pioneer-2 move data.

Figure 2.13 shows an initial condition tree for sample data taken from the Pioneer-2,
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Vis-X

Vanish-Right (80%)
Approach-Right (20%)

Approach-Small (36%)
Approach-Right (36%)
Approach-Vanish (18%)
Approach-Big (9%)

Approach-Ahead (67%)
Approach-Vanish (33%)

Approach-Big (40%)
Approach-Ahead (40%)
Approach-Vanish (20%)

Approach-Small (62%)
Approach-Vanish (38%)

Move-Speed
[min..0][0..max]

Move-Speed
[min..0][0..max]

Approach-Left (40%)
Approach-Big (40%)
Approach-Small (20%)

Vanish-Left (80%)

[min..-58][-58..0.5][0.5..16][16..62][62..128][128..max]

Noisy-Dot (20%)

Retreat-Left (100%)
See-Nothing (93%)
Noisy-Dot (7%)

See-Nothing (63%)
Discover-Left (26%)
Discover-Right (11%)

Approach-Big (100%)

Vis-Width
[min..17][17..37][37..53][53..max]

Figure 2.13. A classification tree generated using precursor phase data from the
Pioneer-2.

and labeled by hand (not by an ssc filter). Suppose the planner asks for the initial

conditions for the outcome approach-big, an experience which an object is approached

until it consumes almost the entire visual field. This outcome appears in 4 leaves of

figure 2.13. Its initial conditions are thus the disjunction of each path leading from

the leaves to the root:

(vis-x ∈ [−58. . .0.5])[9%]∨

((vis-x ∈ [0.5. . .16]) ∧ (vis-w ∈ [37. . .53]))[40%]∨

((vis-x ∈ [0.5. . .16]) ∧ (vis-w ∈ [53. . .max]))[100%]∨

(vis-x ∈ [16. . .62])[40%]

It is worth noting that these initial conditions offer the robot a potential tradeoff

for the purposes of generating behavior. The third disjunct offers the best observed

probability of success, at 100%, but its conditions may be difficult to achieve. Con-

versely, the second and fourth disjuncts offer a lower probability of the outcome in

return for conditions that may be easier to satisfy.

Interpreting classification trees in this way gives the modeling system a way to

answer the last remaining question of the three we identified at the beginning of this

section: what are the initial conditions for o? What if o is a generalized outcome,

though? That is, what if the planner asks for the initial conditions for the GridSim

outcome
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N-N-N-N-D-?-?-?-N-N-U-?-?-?-N-N

This outcome specification corresponds to a situation in which the agent ap-

proaches an object to the north. Since the east and west cameras do not factor

into this outcome, they are left out of the specification. Notice that in the tree of

figure 2.12, experiences that match this generalized outcome profile sit in each of

the three leaves. The initial conditions for this profile, built on that tree, will be

particularly unwieldy:

(ncam-dist < 1.5)[50%]∨

(ncam-dist ∈ [1.5. . .2.5])[80%]∨

(ncam-dist > 2.5)[91%]

We call the scheme that produced the decision tree of figure 2.12 a global induc-

tion scheme. We call it a global scheme because it tries to represent all the possible

outcomes of an action in a single tree. It has no impetus to try to keep experiences

that are partial matches, like those in which ncam-dist goes down, together. The de-

cision tree induction algorithm has no impetus to keep any two arbitrary experiences

together if it can improve the overall purity of the tree by separating them, even if

they are an exact match.

The global scheme makes sense for prediction tasks, then, but is perhaps be less

than perfect for initial condition induction, a situation where local information could

be used to keep experiences of interest together. Our local induction scheme labels

experiences with the symbol match if their ssc description matches a target profile,

and non-match if it does not. Furthermore, the local scheme is not tied to any

particular action. Since the question is what are the initial conditions associated with

o, it is not necessary to fix the action. The local scheme can respond with conditions

that include, among the sensory conditions, the action that must be taken. Thus the

local scheme builds its trees using all available experiences, and includes an additional

feature called command that can be mixed in as an initial condition.
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[< 1.5][> 1.5]
NCAM−DIST

match (14)

COMMAND
[MOVE−N][LIFT, DROP,MOVE−E,MOVE−W][MOVE−S]

CCS−SHAPE
[−1][3]

non−match (66)

match (3)non−match (11)non−match (4)

non−match (4)

Figure 2.14. An initial condition tree generated using the local scheme on for the
GridSim outcome N-N-N-N-D-?-?-?-N-N-U-?-?-?-N-N.

An initial condition tree built using the local scheme is pictured in figure 2.14.

The tree is built on matches to the profile N-N-N-N-D-?-?-?-N-N-U-?-?-?-N-N. Note

that the left subtree, corresponding to experiences with the action move-n, is a more

general version of the tree built on the global scheme. For this more generalized

outcome, the distinction between ncam-dist below and above 2.5 is no longer relevant

to discriminating outcomes. The remainder of the tree is devoted to expressing that

there is an alternative to moving north in order to produce the desired outcome. If

the current cell sensor is reporting a shape with the code 3 in the current cell, then

moving south will also achieve the desired outcome. The initial conditions using the

local scheme are:

((command = move-n) ∧ (ncam-dist > 1.5))[78%]∨

((command = move-s) ∧ (ccs-shape = 3))[100%]

The use of local information allows the initial conditions to be more concise,

with higher estimated probabilities, and also allows the modeling system to identify

alternate activities that can achieve the goal outcome.



CHAPTER 3

GENERATING ACTIVITIES

The core question of this dissertation is, how can an agent compose primitive ac-

tions into sophisticated activities that achieve goals? In section 1.3, we revealed that

our system would be based on means-ends analysis and planning, but that many

technologies were appropriate to the task. Among the lines of AI research that have

applications in building behaviors are reinforcement learning, genetic algorithms and

planning. Each of these schemes specifies behavior in its own way: reinforcement

learning produces policies, genetic programming produces control programs, and plan-

ners produce plans. Each encodes either explicity or implicitly a sequence of opera-

tions designed to achieve a goal. We begin this chapter with a review of these three

technologies. We will review some of the relevant systems in the literature and moti-

vate our eventual selection of planning as the core technology of our developmental

system. We will follow with a detailed description of our planner and an example of

how our planner operates on the GridSim domain.

3.1 Related Work

Many algorithms designed for generating or learning behavior can be thought of

as a search through a space of action sequences for one or more such sequences that

achieve a goal. The size of the sequence space is going to be exponential in the length

of the largest allowable sequence: if there are n actions and the longest legal sequence

is m actions, the space of possible action sequences is nm. Algorithms that effectively

negotiate such a space rely on a core idea or set of ideas that somehow make search

72
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feasible. Innovation may occur in how the space is searched: more efficient searches

allow the space of action sequences to be searched more thoroughly, for example,

and thus allow for more robust or effective sequences to be found. Alternatively, the

innovation may be in how the space of sequences is represented: a more succinct or

expressive representation of an action space may also allow for more robust sequences

to be generated more quickly than a more cumbersome one. With this in mind, there

are three grounds on which we may judge a technology more or less appropriate for

our task. First, it is preferable for an algorithm to conduct its search in a way that

is efficient or robust enough to give that technology a clear cut advantage over others

in its class. Clearly, effectiveness is a primary concern for any system we choose as

a basic developmental mechanism in our system. Second, an algorithm would be

especially well suited to our project if its representation language were agreeable to

downstream learning components like language acquisition and concept formation.

Finally, since we are interested in the nature of development, algorithms that have

appeal on philosophical grounds are preferred. If there is evidence that a particular

process exists in developing humans or animals, we must consider that evidence. We

now look at genetic programming, reinforcement learning, and planning with these

three criteria in mind.

Genetic programming refers to a class of algorithms in which action sequences, de-

fined as computer programs (such as Lisp functions), are built up in a manner inspired

by Darwinian evolution. The genetic programming recipe for a search through the

space of all programs is as follows: First, generate a population of random programs.

Programs are generated randomly from a grammar that will produce legal (but not

necessarily sensible) programs. Next, evaluate each member of the population ac-

cording to some fitness criteria that essentially rates each program according to how

closely it approximates a target behavior or output. Third, carry out a breeding cy-

cle. In the breeding cycle, pairs of programs are selected either randomly or weighted
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according to the programs’ fitnesses. Program pairs are then combined using special

operators for “mating” programs (which typically amount to splicing together pieces

of the two mates) to produce a new generation of programs. When the breeding cycle

completes, some of the older generation may be deleted from the population, and

some retained. The cycle of breeding followed by evaluation continues until the over-

all population’s fitness levels off. Generally, the most fit program or set of programs

is taken as the output of the algorithm.

A significant literature indicates genetic programming is capable of solving prob-

lems in which a brute-force search through the space of programs is prohibitive.

Koza [43] surveys several successful applications using genetic programming to pro-

duce programs written in a subset of the Lisp programming language that solve

simple control problems, such as the cart-centering problem, in which a rolling cart

is brought to halt in a target location through the application forces to the cart’s

sides, and ant foraging, in which optimal monitoring strategies evolve for an ant with

limited sensory capabilities trying to find and consume food in a maze.

Although genetic programming has applications in control and is often considered

as a solution to machine learning tasks, there is a fundamental difference between evo-

lution and development. The key distinction is that evolution is a process that works

over populations, and development is a process over individuals. A species evolves a

mechanism that makes grasping possible, an individual develops a familiarity of how

to control the mechanism reliably. There is strong evidence that evolution is indeed

a real process, and thus genetic-programming is well motivated. However, there is

no evidence that an evolutionary process underlies the development of an individual.

Rather, the lengthy, computationally intensive, and largely random process that it

genetic programming simulates presents feasibility issues for a single situated agent.

How are the hundreds of generations of programs to be evaluated? Is there not a more
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focused search procedure than natural selection that would substitute good heuristics

for a randomized generate-and-test process performed on large samples?

Genetic program seems not to hit the mark on two of our criteria: effectiveness,

for it’s heavy computational demands, and evidence in favor of its existence as a

natural process in human or animal intelligence. Perhaps the most worthwhile idea

of genetic programming for our purposes would be that a programming language is

a natural choice for representing the activities of a mobile robot, for several reasons:

Programs are readily executable by machine and generally readable by humans. Their

structured, declarative nature also simplifies the task of later learning components like

concept and language learning. One can envision forming concepts around if-then

clauses of activities; the construct (if (vis-a-width < 100) then acquire) could

be interpreted as conditions for the concept of a graspable object, for example, as

indicated by the applicability of the acquire procedure. Still, the computational

impracticalities of genetic programming seem to outweigh the attractiveness of its

output for our purposes.

This leads us to our second candidate technology for creating action sequences,

reinforcement learning (RL). The idea behind reinforcement learning is that the inter-

action between an agent and its environment consists of not only sensory information,

but also positive and negative reinforcement called rewards and penalties, respectively.

Reward signals, in RL, are the basis of an agent’s behavior; agents act to maximize

rewards.

In order to maximize reward, a reinforcement learning agent must model the be-

havior of the reward signals it receives as it interacts with its environment. RL agents

generally model rewards with a value function (Watkins’ Q function [88], for exam-

ple) that approximates the expected reward of taking a given action in a particular

sensory context. The value function then serves as a basis for an action-taking pol-

icy, which typically amounts to hill-climbing on the surface of the value function,
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or greedily selecting the action that maximizes the expected future reward given the

value function in the current context.

The key to a good policy is to learn as close an approximation of the environment’s

actual reward function as is possible given the sensory apparatus of the agent. The

Bellman equations provide a mechanism for gradient descent learning of such an

approximation incrementally, through situated activity and observing the resulting

rewards [3]. Using the Bellman equations allows a learning agent to approximate the

long-term rewards associated with action-taking, and thus produce a policy which

maximizes rewards not only locally, but over the long term. The Bellman equations

are guaranteed to converge in certain situations [17, 36], and thus as an RL agent acts

in its environment, its ability to achieve reward improves. In practice, reinforcement

learning works on a wide range of applications, even in some where it is not known if

convergence is guaranteed. Some successful applications include simple control tasks

like navigating a simple race car in the racetrack problem [27] to learning routing tables

for TCP networks [7]. Others have extended the technology to more complex tasks,

including robotic foraging and exploration tasks [52], [50]. The DYNA system extends

reinforcement learning by introducing action modeling to speed up learning [79]. Still

other work has approached the task of reinforcement learning in hierarchical actions

spaces with mixed results [82], [76], [39].

Our first criterion for a good activity-generating component is effectiveness, and

RL seems to perform well at control tasks. However, there would be a handful of hur-

dles to clear to make it work in our system. These hurdles are encountered in every

RL system, and chief among them is that reward functions have to be implemented

by the system designer. Reward functions can be very complex or very simple, but

in the end the RL agent is doing hill climbing on the value function, which is an ap-

proximation of the reward function. Thus, the reward function indirectly determines

the eventual behavior of the agent. How would an agent produce and approximate its
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own reward functions? Can one specify a universal reward function that would allow

an agent to choose and learn the behaviors it needs? Furthermore, we would need to

decide on a value function. Many early RL systems used a lookup table to associate

state-action pairs with rewards. Once the RL paradigm showed promise, researchers

began to apply it to increasingly difficult tasks, and as state spaces became larger

and larger, lookup tables became increasingly inadequate. RL researchers began us-

ing various function approximation techniques, including artificial neural networks,

to approximate the reward function mathematically. These approximations allow RL

techniques to scale to more difficult problems, but in so doing, the representation

used by RL systems becomes less well-understood. As a result, effectiveness, our first

criterion for a good developmental basis comes at the cost of our second criterion of

being a representation that is amenable to downstream development.

Reinforcement learning is well-motivated in accordance with our third criterion for

a good developmental basis. The ideas underlying reinforcement learning stem from

evidence that reinforcement plays a significant role in animal learning [77]. While it

is indisputable that reinforcement plays a role in what an actor will do, it does not

necessarily follow, though, that it influences how the rewards are achieved, as it does

in RL. That is, reward signals may determine the goals of an agent while not actually

influencing in any direct way the steps that leads up to the goal. The leap made

by reinforcement learning, and indeed the innovative contribution of RL, is that the

reward signal simultaneously determines what an agent seeks to do and how it seeks

to get it done. While many systems succeed in this paradigm, it is not fully supported

by what we know about developmental psychology that a reward signal determines

both what and how goals are achieved. In other words, it may be possible to leverage

the motivation behind RL – that reinforcement drives behavior – without using the

underlying learning algorithms.
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The effectiveness of RL, coupled with its well-motivated background, prompted

us to run some preliminary experiments. These experiments frequently resulted in

pathological behavior that we could not easily understand. The solution generally

required tinkering with the reward structure to produce more acceptable behavior.

Our experiments with hierarchical reinforcement learning proved equally frustrating

and often turned into exercises in experimenter intervention, requiring a great deal of

tinkering with state spaces and reward signals to produce acceptable results. These

pilot studies, some of which are documented in [82], suggested that tinkering might be

necessary each time our agent wanted to learn a new task. In addition, the sometimes

opaque and complicated function approximators used by RL create challenges to

downstream components like language and concept learning. Because the behavior is

only implicitly represented by the value function, the structure of activity is hidden;

even if concepts like graspable might be extracted from policies, they certainly do not

fall out as simply as they might from an explicit representation.

Since the time of our initial foray into RL, there has been considerable effort

placed on the use of hierarchical control structures, generalization, and abstraction in

reinforcement learning policies [18, 32, 54]. Many of these approaches are relevant to

the difficulties we encountered in our pilot studies, and we feel that in all likelihood,

RL could be made into an adequate basis for development in a system like ours. In

the end, though, we did explore a third candidate that we felt was superior according

to two of our three criteria.

Planning is the third family of algorithms we reviewed to handle the problem of

producing action sequences in our developmental system. The foundation of tradi-

tional AI planning dates back to 1963, when the idea of means-ends-analysis was first

brought to bear in a published AI system. [59] The General Problem Solver (GPS)

attempted to solve problems by means-ends reasoning. Given a representation of a

problem state, a set of operators, and complete models of the operators’ effects, GPS
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would solve problems by first identifying the differences between a goal state and its

current state, and then selecting operators whose effects would resolve differences.

Because some operators themselves have preconditions, the selection of an operator

might introduce more differences, which would be resolved by recursively running

GPS on the new set of differences. Once all differences are settled, this algorithm

will have constructed a solution: a sequence of operators that, when applied in the

initial state, bring about the goal state. This form of reasoning backward from a

goal state to a system’s current state, reducing differences as one goes, is known as

backward-chaining, and is the underpinning of what we refer to as classical generative

planning.

Since that time, some weaknesses of basic planning approach to complex tasks have

been identified, such as the intractability of the general planning problem (probabilis-

tic STRIPS planning is EXPTIME-complete [49]) and pathology called Sussman’s

anomaly, where planning operators and subgoals can interact and cause problems for

linear planners [78]. Extensions to the basic algorithm have been made, to address

these problems and others: planners starting with abstrips soon made use of hier-

archical and abstract operator representations. Nonlinear planning was introduced

as a solution to Sussman’s anomaly [80]. Gaps between the simple propositional

worlds of gps and continuous, complex environments of mobile robots were bridged

by ambitious projects like Prodigy [9], and the idea of operators with temporal ex-

tent has been addressed by the zeno planner [64, 84]. Still other planners integrate

planning with learning (Prodigy, for example. Some such systems attempt to

learn heuristic information to assist the planner in choosing the best plan when sev-

eral are possible in a given situation, as with the rogue module of prodigy [31],

while others contain functionality for learning propositional operator models [87].

State of the art planning meets our system’s criteria quite well. One need only

go as far as the Prodigy architecture for an example of a planner that can operate
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efficiently in a complex environment. This system has been implemented on mobile

robots operating in real-world situations with good success. The utility of Prodigy

in complex domains indicates that planning meets our first criterion for a technology

of our system: it works and can be scaled up to manage difficult tasks. The represen-

tations used by typical planning technologies are also well suited to our application.

Plan structures are naturally compositional and hierarchical in nature. Typical plan-

ning languages are also declarative, easily interpretable by computer programs or

human analysts. Like the structured programs that genetic programming produces,

plans are more easily analyzed for later learning than implicit representations like

those produced by reinforcement learning. Finally, there is clear evidence that in-

telligent beings engage in means-ends analysis and planning type processes to solve

problems. This lends credibility to the idea that means-ends analysis might be the

basis for the development of new activities.

This is not to say that an off-the-shelf planning system is the answer to all of our

problems. While some of the aforementioned planners are significant advances toward

our cause over GPS, no single system seems to address all the unique demands of our

developmental system. While planning has been applied with success to robotics,

it is still common practice to engineer perceptual spaces and sophisticated planning

operators to make the complex tasks these robots plan for possible. While the kinds of

things our agents will do are in most cases less sophisticated than what many modern

planning agents do, reasoning in a continuous sensor space with learned operators

presents a significant challenge. Nevertheless, the benefits of the representations used

in planning, coupled with the strong evidence of planning in intelligent agents do

suggest that planning is the strongest candidate of the three.
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3.2 Planning as a Basis for Development

Planning is one of the longest-lived technologies in the field of AI research. At

the time of this publication, more than 40 years have passed since GPS was first

introduced. As such, it is not surprising that there are many variations on the basic

planning formulation to choose from, and many ways in which these variations distin-

guish themselves from each other. Before we describe how our developmental system

uses planning, it will be helpful to draw a distinction between two major categories in

planning. The distinction lies in how planners produce plans, and divides the world of

planning systems into two basic categories: generative planners and skeletal planners.

Generative planners are those that literally generate plans from scratch by stitch-

ing together sequences of planning operators to get an agent from a starting state to

a goal. All of the planners cited in the literature are primarily generative planners

in that they compose plans from operator models. Generative planners rely heavily

on these planning operators, and the models must correctly specify operator precon-

ditions (or initial conditions) and postconditions in order for the planner to create

successful plans. Throughout the planning process, models are used to identify useful

operators in the means-ends analysis step and to verify the correctness of candidate

plans.

Skeletal planners, by contrast, select plans from a library of pre-existing tem-

plates. Templates can be retrieved according to the goals they achieve, and may be

ready-to-use plans or only partially instantiated. Partially-instantiated plans leave

details undefined and require the planner to fill in these details prior to execution.

Often, a partially-instantiated plans will break down a single goal into a series of

subgoals. When subgoals are encountered, the skeletal planner is recursively invoked

to select from the library an appropriate template. This naturally hierarchical pro-

cess bottoms out when the planner reaches into plan templates that operate at the

level of actions, with no details to fill in. Some skeletal planners allow variables in
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partially-instantiated plans. Variables express the roles that objects or resources in

the environment will play in the unfolding of a plan and allow plans to be more gen-

eral by allowing the planner to instantiate the variable values prior to execution by

selecting objects or resources that will make the plan work. The name skeletal plan-

ning stems from the idea that plans are specified with as many details left undecided

as is practically possible. Plans are stored as “skeletons”, and the details of their

execution must be decided when the plan is retrieved.

One class of planners that straddles this line of distinction is called case-based

planning, and provides for the storage and retrieval of ready-to-use or skeletal plans.

Many case-based planners take plans created by a generative process and store them

as skeletal plans, allowing a planning system to resort to generative planning when it

is necessary, and skeletal planning when appropriate plans are available.

To this point, we have focused exclusively on generative planning. A generative

component is required to explain where the beginnings of activity come from in a

developmental system. Generative planners are able to produce novel sequences of

behavior from in situations, where skeletal planners are limited to working with a

pre-existing library. On the other hand, generative planners in their most basic form

always start from scratch. There is no persistent notion of an activity at all if the

agent is always generating behavior from scratch. Our intent in introducing skeletal

or case-based planning at this point is to suggest that in a sensible developmental

scheme, generative and skeletal planning work in tandem. Successful plans may be

cached in a library for later use via skeletal planning, the less computationally taxing

of the two approaches to planning. In novel situations, where no appropriate cached

plans exist, an agent resorts to generative planning. Combining a simple plan-caching

scheme with a generative planner is not a new idea; the STRIPS planner implemented

a macro learning component to do this in one of its early incarnations [22] and the

SOAR planner includes a “chunking” mechanism for doing just this [45].
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Our system is built to utilize both generative and skeletal planning. The gen-

erative component is the centerpiece of the activity generation process, the skeletal

component saves computation time and maintains structures and statistics for down-

stream learning. In the section that follows, we discuss the generative component

of our system and include examples of its operation in the GridSim domain. We

conclude this chapter with a description of the simple plan-caching scheme we use to

handle storage, reuse, and removal of generated plans.
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Figure 3.1. A rendering of the GridSim simulator.

3.2.1 Generative Planning

Our original concept for the generative planning component of our developmental

system was to build a planner in the GPS or STRIPS mold and adapt it to the

requirements of operating at the sensorimotor level. The operation of our proposed

planning system is best described with an example in the GridSim domain.

For our discussions on planning, we will assume that our agent has sufficient

models to build good models for planning. As we will show in the evaluation, at

2000 experiences, a GridSim has models that are generally accurate and stable. Our

system selects outcomes as its goals, in accordance with the philosophy of planning

to act, as introduced in section 1.3. Outcomes, and goals, are processed using the

Delta-Simple filter, and we will refer to them in this discussion using the shorthand

notation introduced in section 2.2.3.

Suppose that our GridSim agent is sitting just off the center of the 8× grid,

as in figure 3.1. A typical goal outcome might be described in the Delta-Simple

shorthand as follows:

U-U-N-N-N-N-N-N-N-N-N-N-N-N-D-D
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Recall the semantics of the Delta-Simple shorthand. In the above outcome, the

bay shape and color sensors both increase (denoted by U) and the ccs sensors both

decrease (denoted by D). This outcome corresponds to lifting a piece of debris into the

cargo bay. The bay sensors reflect the introduction of a new object, and the current

cell sensors reflect the object disappearing from the current cell. One might call this

outcome lift-debris.

For a human observer, generating a plan to get the agent from where it is pictured

in figure 3.1 to the above outcome is simple once the semantics of the goal outcome

are known. The goal outcome is simple to achieve, and can be achieved by a variety

of plans., The simplest plan achieves the goal in only two steps.

1. move-w until an object appears in the ccs sensor

2. lift

How would a means-ends analysis (MEA) planner approach this goal? Traditional

MEA planning starts by looking at a goal state and comparing it to the current state.

Since we do not work with goal states under the planning to act scheme, our goal is

an outcome, and not a state. Our planner must start by getting the initial conditions

of the goal outcome from the modeling system. Here are the initial conditions for

olift, taken from the initial condition tree shown in figure 3.2:

((command∈{lift}) ∧ (ccs-shape= 3))[100%]

The system has only found one way to produce the desired outcome: to execute the

lift command when the ccs shape sensor reports an object with shape code 3 in the

current cell. The observed probability of the desired outcome given the above initial

condition is 1.0. The MEA planner would identify the goal state as (ccs-shape= 3).

The next step is to compute the difference between the current state and the

goal state. In the agent’s current state, as pictured in figure 3.1, the current cell

sensor detects nothing in the current cell, reporting a value of −1. The difference is
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CCS−SHAPE
[−1,2][3]

COMMAND
[LIFT][DROP,MOVE−N,MOVE−E,MOVE−W,MOVE−S]

non−match (1900)

match (12) non−match (88)

Figure 3.2. An initial condition tree built for the lift-debris outcome.

noted and added to a goal stack. The goal stack maintains a list of the outstanding

differences between the agent’s state and the necessary conditions for plan success at

various stages of the planning process. The goal stack is used to verify whether or

not a plan is valid. A plan is valid if when it is executed, each step in the plan will

unfold as predicted by the planner, ultimately leading to the goal.

The next step of the planner is to search for operators that can resolve the out-

standing conditions on the goal stack. Planners that work at the symbolic level simply

select out operators that resolve one or more outstanding conditions by matching op-

erator postconditions against the goal stack. This process is complicated by working

at the sensorimotor level. A sensorimotor agent does not have operator models that

state, “changes the value of ccs-shape to 3”. They have experiences, with time series

sensor readings, and discrete interpretations of the behavior of those sensor readings

(provided by the ssc classifier). How could sensorimotor models be used to select

appropriate plan steps? Here are two possibilities:

• Use the raw sensor readings and search for goal crossings. Goal crossings are

points in the time series where outstanding goal conditions, like (ccs-shape=

3), are met.
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• Use the ssc classification to select outcome classes that drive sensor values

toward goal values. In our example, where the goal condition is (ccs-shape=

3), and in the current state (ccs-shape= −1), the planner would search for

outcomes that include regions where ccs-shape increases.

Both of these schemes have their drawbacks. The goal crossing technique is com-

putationally expensive, requiring the planner to pore over time series, point by point.

The second scheme works under the assumption that an operator that drives a sensor

in the right direction can actually induce a goal crossing. This is not always true.

Our ccs-shape goal offers a fine example of how this assumption can be violated

when using the Delta-Simple filter. Consider two experiences, one in which a piece

of debris with shape code 3 comes into view of the west-facing camera, and one in

which a dropoff location with shape code 2 comes into view. Both experiences will

be classified by the Delta-Simple filter as showing an increase in the ccs-shape

sensor, but only one of them can actually achieve the goal of driving ccs-shape to

the specific value 3. The assumption that driving a sensor in the right direction can

achieve the desired state is easily violated. Because situations like this exist through-

out the GridSim domain and presumably others, the trend-based scheme cannot be

counted on, and the goal crossing scheme should be preferred in spite of its heavy

computational cost.

There are 82 experiences in our set of 2, 000 that show a goal crossing at (ccs-shape=

3). These consist mainly of movement actions where the agent moves over a debris

object, as we would expect, but also drop actions in which debris is dropped from the

cargo bay into the current cell. The modeling system can be queried for the initial

conditions on these 82 experiences. The resulting tree is fairly complex, consisting of

15 decision nodes and 19 leaves. Of those 19 leaves, 7 contain positive instances of

the goal crossing, and 5 of those 7 leaves show a probability of a goal crossing above

1%. The initial conditions above the 1% threshold are shown in figure 3.2.1.
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((command∈{move-w}) ∧ (wcam-dist< 1.5)) ∧ (wcam-shape= 3))[100%]
((command∈{move-w}) ∧ (wcam-shape∈ {2, 3}) ∧ (wcam-color= 3) ∧ (ecam-shape= 2))[100%]

((command∈{move-e,move-n}) ∧ (ncam-shape= 3)) ∧ (ecam-shape= 3)) ∧ (wcam-shape∈ {2, 3}))[100%]
((command∈{move-s,move-e}) ∧ (ncam-shape= 1)) ∧ (ecam-shape= 3)) ∧ (wcam-shape∈ {2, 3}))[64.5%]

((command∈{move-s,move-n}) ∧ (ecam-dist= [2 . . . 3])) ∧ (ecam-shape= 2)) ∧ (wcam-shape∈ {2, 3}))[14.5%]

Figure 3.3. Initial conditions for experiences crossing the goal (ccs-shape= 3).

Initial conditions with the highest observed probability are listed first. The first

two are conditions in which move-w are predicted to bring about a goal crossing

at (ccs-shape= 3). They both have an estimated probability of 100%. The first

condition set is most interesting, and most intuitive. It states that if you move west

with the west-facing camera reporting an object with the debris shape code, and the

distance to that object is 1.5 or less, the agent will notice the debris appearing in

the ccs sensor. This corresponds to the state of the agent in figure 3.1. The second

condition set includes the ecam-shape sensor and removes the wcam-dist restriction.

The number of instances supporting this leaf, however, is low. In these situations, an

agent’s confidence in this leaf should be low to reflect the dearth of data supporting

it. The third condition set is interesting in that it includes conditions on three shape

sensors oriented in different directions. In this grid world, noting the shape in three

of the four cardinal directions is sometimes enough to accurately predict the exact

cell that the agent is sitting in. If the agent knows its exact location, and the debris

objects are fixed in their locations, then accurate predictions can be made. In some

cases, the decision tree induction process will key on these “landmark” situations

that allow it to bring a leaf in the tree into one-to-one correspondence with a cell

in the GridSim domain. The third initial condition set above is an instance of this

tree-building behavior.

The fourth and fifth condition sets are less interesting in that they are not 100%

pure. Usually this is a result of the decision tree induction algorithm being unable to
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pin down the exact conditions for a given type of outcome. Consider that in this case,

there are only 82 of 2000 experiences corresponding to our target behavior, and those

82 instances are mixed among 5 different possible actions, each of which has a distinct

initial condition set. With more positive instances, the initial condition sets for the

experiences that the last two conditions represent should evolve to look increasingly

like the first set listed above, with 100% observed probability and conditions that

correspond to real structure in the environment.

While it may seem obvious to us that simply selecting the first set of initial

conditions and running with them provides an easy solution for our agent, rarely is

it so simple and never is anything obvious to a planning algorithm. Instead, when

confronted with a decision, the usual course of action for a planner is to treat the

situation as a search for the best of the possible decisions. Our planner might build

a tree to organize the search, as shown in figure 3.4. At the root of the tree is the

ultimate goal: the lift-debris outcome. The children of any node in this type of plan

tree are the initial conditions for operators that satisfy the conditions for their parent.

Since there is only one set of initial conditions for lift-debris, there is only one branch

coming out of the lift-debris node, leading to the node labeled “IC”. But there are five

sets of initial conditions that might lead to the goal crossing with (ccs-shape= 3),

and so there are five children to the node labeled “IC” in the tree.

Paths through the tree correspond to plans. Each node in the tree has a unique

copy of the goal stack that can be used to determine which nodes appear to be

complete solutions or are more or less promising than the others. As long as there is no

node in the tree with a satisfied goal stack, the planner continues to search by selecting

a node to expand by computing its initial conditions and creating children for them.

The search can be conducted by any one of many tree-search algorithms: breadth-

first, depth-first, beam-search, and so on. Once there is a leaf with a completed goal

stack, that leaf can be used to produce a plan. A goal stack is complete if its only
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IC1
move−w

wcam−dist<1.5
wcam−shape=3

IC2
move−w

wcam−shape {2,3}
wcam−color=3
ecame−shape=2

IC4
move−s,move−e

ncam−shape=1
ecam−shape=3

wcam−shape {2,3}

IC3

ncam−shape=3
wcam−shape=3

ecame−shape {2,3}

move−e,move−n
IC5

move−s,move−n

ecam−dist [2..3]
ecam−shape=2

wcam−shape {2,3}

GOAL:
lift−debris

ccs−shape = 3

IC
lift

Figure 3.4. A plan tree for lift-debris, 2 levels deep.

outstanding conditions are satisfied in the agent’s current state. In the case of our

current plan, the node labeled “IC1” would have a completed goal stack; the move-w

action satisfies the condition (ccs-shape= 3) and the initial conditions at “IC1” are

satisfied in the current state. Each of the other leaves in figure 3.4 have goal stacks

with outstanding conditions. For these nodes, the search can be continued to find

alternate plans.

Checking a goal stack for a completed plan is another task that is complicated by

operating at the sensorimotor level. Typically, to test for completeness, the planner

must simulate the plan to ensure that what it expects to happen will actually happen.

The planner simulates each plan step, transforming the starting state of the agent

according to the operators it applies as it goes. It must first verify that each operator’s

preconditions are in fact met, then apply the postconditions to the current simulated

state before going on to the next step. Plans must be verified in this manner because

of a situation called clobbering in which operators inserted into a plan to satisfy certain

conditions may invalidate downstream conditions previously considered satisfied by

other operators. The process of state projection, or simulating the effects of a plan

on the world state, allows the planner to verify that clobbering is not a problem.
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For symbolic planners like STRIPS, simulation is relatively straightforward. State

projection is a simple matter of maintaining a list of active predicates by running

through operators’ add and delete lists. So long as the operator models are accurate,

the results of state projection are generally simple to compute and accurate them-

selves. For sensorimotor planners like ours, sensor readings must be projected from

time series sensor data. Some sensors’ behavior may be independent of the effect an

operator was selected for. For example, the move-w action in the plan of figure 3.4

was included in the plan to drive ccs-shape to 3. But what will happen in the north

and south facing sensors? These effects may be important to downstream planning

steps. How can we project the sensory state in this case, or worse yet, how can we

project sensory states for a complex, real-world sensorimotor agent like the Pioneer

where the sensor behavior can be noisy and can change in the middle of an activity?

Our experience implementing a generative, means-ends analysis planner unfolded

much like this discussion. The adaptation of a planner built for a symbolic, proposi-

tional world to a continuous, sensorimotor world proved difficult in three ways. First,

operator selection presented a challenge. Determining which operators can satisfy

outstanding goal conditions became an expensive matter of searching for goal cross-

ings in raw time series data. Second, the sometimes extensive results of the goal

crossing algorithm often resulted in a plan tree with a high branching factor. The

search for plans itself was a computationally taxing process. Finally, sensory projec-

tion, necessary to verify the correctness of a plan, was a decidedly difficult task with

no straightforward solutions. Observations like these led us to the conclusion that it

is preferable to avoid sensory projection and its related problems (and by extension

classical generative planning) in a sensorimotor context.

A desire to move away from classical planning led us to the following insight. The

goal of an agent is to recreate some experience. For any such goal, an agent may

previously have had a similar experience once, several, or many times. But there
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1. Collect all experiences that match the goal g into Eg

2. For each experience en ∈ Eg do

(a) For i from 0 to max-plan-length do

• if precursor(en−i) matches the current state,
then en−i . . . en constitutes a plan

Figure 3.5. The PFT planning procedure.

is always at least one such experience in memory, and the agent knows the trace of

experiences that preceded each instance of the goal outcome. Could it be possible to

analyze the previous instances of the goal outcome, along with the experience trace

leading up to it, and recover a plan from that trace that applies in the current state?

Doing so would allow the planner to skip over the details of sensory projection, since

those constraints are inherently enforced in the experience trace.

We call our planner the Plans From Traces (PFT) planner, as it attempts to

recover workable plans from experience traces that lead to a goal outcome. The

general PFT planning process is written up in figure 3.2.1, and can be summarized

as follows. First, select all experiences that match the goal outcome. Next, choose an

experience called the exemplar, en, from the set of matches Eg, where en is the nth

experience in the agent’s history, en−1 is the experience that directly proceeded en,

and so on. Now check to see if the precursor sensory state for en matches the current

state. If it does, then we have found an inroad to the trace, and we simply execute

the action that generated en. If it does not match, then consider the precursor to

en−1. Continue searching backward through the trace of experiences leading up to en

until a match is found or some predetermined number of steps have been taken. If a

match has been made at en−i, then the sequence en−i . . . en comprises a plan. If the

threshold is reached without a match, choose a new exemplar from Eg and repeat

until a matching plan is found or the set of exemplars has been exhausted.
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The key to this simple algorithm lies in the matching procedure that tests if the

precursor of an experience in the trace matches the agent’s current state. A straight-

forward test for equality is not likely to turn up many matches in most reasonably

complex domains. Consider that the basic GridSim 8× 8 domain has 72 states per

configuration of debris in the environment. Each time debris is moved, taken away,

or introduced into the environment, more unique sensory states are introduced until

that number reaches several hundred. The Pioneer robot has a practically unbounded

number of sensory states since many of its sensors are real-valued. The innovation of

PFT is in how it generalizes experience traces to find inroads when an exact match

does not exist.

PFT finds inroads to experience traces by treating each experience trace leading

to an exemplar as an instance of a plan. The PFT planner attempts to fill in the con-

ditions that allowed the actions of the plan to unfold into a trace resulting in the goal

outcome. PFT does this by trying to produce a plan structure called a triangle table

for the experience trace. Triangle tables were introduced with various incarnations

of the STRIPS planner and in that system, served two functions. The first function

was as an execution-monitoring structure that allowed STRIPS to respond (albeit in

a limited way) to unexpected effects of actions in the world. The second function

was as an archival structure for STRIPS’ plan-caching ability so that an executable

version of the plan could be stored and retrieved for later use.

A triangle table is a lower-diagonal matrix whose columns are labeled by operators

and numbers, ranging from 0 to n, where n is the size of the plan. The rows are

numbered from top to bottom from 1 to n1. A non-empty cell at row i, column j

indicates the initial conditions for operator i are satisfied by the j th operator of the

plan. Said differently, entries in the row to the left of the ith operator are precisely the

1Triangle tables used in classical planning have n + 1 rows, since classical planners result in a
goal state rather than a goal outcome.



c©Matt Schmill 2003, preprint - do not distribute 94

wcam−dist < 1.5

wcam−shape = 3

ccs−shape = 3

0 1
current−state

move−w

2

lift

1

2 −−−

Figure 3.6. A simple triangle table for lift-debris.

initial conditions of that operator, and the entries in the column below the j th operator

are precisely the conditions achieved by operator j that are needed by subsequent

steps of the plan. Column zero contains conditions in the current state description

that are initial conditions of the various operators of the plan. The entries in the

bottom row are those achieved by various steps in the plan that are components of

the goal state, in the case of classical planning, or in our case, initial conditions to the

goal outcome. A sample triangle table, built from our STRIPS-style plan to execute

the lift-debris operator, is shown in figure 3.6.

Triangle tables are efficient representations for simple plans. They express the ac-

tion sequence that comprises a plan, the initial conditions to make each step possible,

and they indicate which plan steps are responsible for satisfying later steps’ initial

conditions. The PFT planner generates plans by attempting to build working trian-

gle tables for existing experience traces. PFT follows the general procedure outlined

in figure 3.2.1, building partial triangle tables for experiences en−i . . . en as part of

the matching process at the heart of the algorithm. When a triangle table with no

unsatisfied initial conditions in any of its cells is built, then a working plan has been

recovered.

Let us consider an example of the PFT planner in operation to illustrate how

partial triangle tables are generated. The planner starts by retrieving a set of expe-

riences Eg that match the goal. Let us assume again that the goal is lift-debris, and
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therefore Eg is a set of experiences that have the same Delta-Simple encoding as

lift-debris.

The PFT planner then selects an exemplar from Eg. Suppose it is an experience

labeled exp-lift-19572. It considers this experience alone as the basis for a possible

plan and attempts to build a triangle table as evidence that this plan will work.

The triangle table for a single step plan has two columns and a single row, and is

pictured in figure 3.7. The PFT planner must next compute the initial conditions for

experiences of type exp-lift-1957. In our earlier discussion, the initial condition for

lift-debris is (ccs-shape= 3). Assume for the sake of this discussion that the initial

conditions have expanded to the following, a more accurate set of initial conditions

for this domain:

((ccs-shape= 3)) ∧ (bay-shape= −1))[100%]

This new addition to the initial conditions for lift-debris states that the bay must

be empty prior to taking action in order for the lift to succeed. The PFT planner

now places the initial conditions into the triangle table, one cell to the left of the

operator they apply to: row 1, column 0. The corresponding triangle table is shown

in figure 3.8. The PFT planner then attempts to validate the table by showing that all

the initial conditions in all the cells satisfy the definition of a triangle stated above.

That is, conditions in row (i, j) are satisfied by operator j in the plan and enable

operator i to work. Note that for the plan described by the current triangle table

to work, the conditions in cell (1, 0) would have to be satisfied in the current state.

The bay condition is satisfied, but the ccs condition is not. We indicate cell with

conditions that violate the definition of a valid triangle table by shading the cell, and

the condition(s) that violate the definition are printed in bold. A triangle table with

an invalid cell does not express a valid plan, and PFT must continue on.

2This is an actual expeirence generated by our system as are the rest of the experiences referenced
in this section.
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The planner’s next step is to expand the triangle table. It retrieves the experience

recorded just prior to exp-lift-1957, which is an experience labeled exp-move-s-1956.

An extra row and column are added to the triangle table, as shown in figure 3.9. Next,

the initial conditions for each step are computed, and inserted in to the table one cell

to the left of the operator they correspond to. First, the initial conditions for step 2,

as shown in figure 3.10, then, the initial conditions for step 1, as shown in figure 3.11.

Again, the planner attempts to validate the triangle table. It works through the

columns, right to left, to see if the operator taken at step j of the plan satisfies the

conditions listed below it in column j of the table. Any condition in cell (i, j) that

is not satisfied by step j of the plan is moved one cell to the left, to cell (i, j − 1),

until the conditions are either satisfied by some operator, or they reach column zero,

in which case those conditions must be satisfied in the current state for the table to

be validated.

The table in figure 3.11 is checked as follows. First, cell (2, 1) is tested to see if the

experience exp-move-s-1956 was responsible for satisfying either of the conditions

listed in that cell. The goal crossing algorithm is used to perform the test, and in this

case, it is determined that indeed the condition ((ccs-shape= 3)) was satisfied by

the experience exp-move-s-1956, but ((bay-shape= −1)) was not. The bay shape

condition is moved one cell to its left, into (2, 0), and cell (2, 1) is validated. Next,

cell (2, 0) is checked. Cells in column zero are checked against the current state, and

so the bay shape condition is compared to the agent’s sensory state. The agent’s

bay is empty, and so cell (2, 0 is valid. Finally, cell (1, 0) is considered. Referring to

figure 3.1, note that one of the conditions in this cell, (scam-shape= 3) is satisfied:

there is a debris object to the south. However, the distance reported by the south-

facing camera is greater than 1.5, and so cell (1, 0) is not valid. The triangle table

does not yet represent a working plan.
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lift

current−state
0

1

1

Figure 3.7. Step 1 of the PFT process: building an empty table for a one-step plan.

lift

current−state
0

1

1 ccs−shape = 3

bay−shape = −1

Figure 3.8. Step 2 of the PFT process: inserting the initial condition for the lift

step.

The planner continues by again expanding the table to include three steps. It

retrieves another preceding experience, this one labeled exp-move-s-1955, and inserts

it into the table. The initial conditions for each step in the plan are acquired from

the modeling system and inserted into the new triangle table, as shown in figure 3.13.

Conditions that are satisfied remain in their current cell, and those that are not are

moved left, as before, until they are satisfied or they reach column zero. The result

of the validation process is the triangle table shown in figure 3.14: a fully validated

table. The plan prescribes moving south until a piece of debris is less than 1.5 units

to the south, then move south again until the ccs picks the debris up, and finally,

execute a lift action to produce the lift-debris outcome.

While this plan is not the quickest route to the goal, it is a valid plan that will

work as the GridSim domain is configured in figure 3.1. It is entirely possible that

another trace in memory would lead to the shorter plan based on moving west. In

any case, the PFT planner recovers plans from experience traces without having to

address the difficult task of state projection.
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Figure 3.9. Step 3 of the PFT process: expand the triangle table to include a new
action.

ccs−shape=3

bay−shape=−1

0 1
current−state

2

lift

1
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move−s

Figure 3.10. Step 4 of the PFT process: compute the initial conditions for step 2
of the plan.

scam−shape=3

scam−dist < 1.5

ccs−shape=3

bay−shape=−1

0 1
current−state

2

lift

1

2

move−s

Figure 3.11. Step 5 of the PFT process: compute the initial conditions for step 1
of the plan.
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ccs−shape=3

scam−shape=3

scam−dist < 1.5

bay−shape=−1

0 1
current−state

2

lift

1
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move−s

Figure 3.12. Step 6 of the PFT process: test for condition satisfaction.

ccs−shape=3

bay−shape=−1

scam−shape=3

scam−dist < 1.5

scam−dist > 1.5
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Figure 3.13. Step 7 of the PFT process: expand the triangle table to include a third
action.

ccs−shape=3

scam−shape=3

scam−dist > 1.5

bay−shape=−1

scam−dist < 1.5

2 3
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current−state
0 1

move−s
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Figure 3.14. Step 8 of the PFT process: insert initial conditions and validate table
cells.
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The PFT planner incorporates elements from case-based planning with elements

from generative planning. It is a case-based planner in the sense that examples of a

path to the goal must exist in the experience history of an agent for planning to be

possible. Each time it constructs a plan, the PFT planner is retrieving a plan from

memory, whether or not the agent was acting under the influence of a plan at the

time. In order to verify that a trace will work as a plan, though, the PFT planner

must use means-ends type reasoning to determine how the steps in a trace work

together to result in the goal. The planner is case-based in that it requires examples

and generative in that it produces plans where there was no previous notion of a plan.
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3.2.2 Plan Caching

As we outlined earlier, keeping successful plans around for reuse is, from a practical

standpoint, a sensible thing to do. True case-based planning deals with how to

efficiently store, organize, retrieve, and refine working plans. Considerable effort in

this field has been devoted to the study of how to efficiently organize plans for retrieval

when many exist, and how to retrieve plans that are most relevant to the task at

hand when no exact match exists. Our needs our quite modest in comparison to

the functionality that state of the art case-based planners provide. Since the number

of goals our agent might pursue is fixed by the number of unique and repeatable

outcomes in a given environment, our system has the luxury of using simple lookup

tables or to do indexing. Our plans are indexed by their goal outcome and stored as

triangle tables.

Since many goals can be satisfied a number of ways, a single goal lookup may

result in one, none, or many cached plans. In the case where one or more plans are

found, the retrieval system simply searches for one that applies in the current state.

This procedure is a matter of looking for inroads into existing triangle tables. Recall

that “inroads” are columns of triangle tables where, if the table were truncated at

that column, the triangle table would be valid in the current state. Each candidate

table retrieved can be scanned left-to-right for inroads.

When matching plans are retrieved, our system takes the opportunity to re-

evaluate the plan during reuse. If the plan succeeds, then no further action is required

by the planner. A count of successful uses is incremented and our agent goes on its

way. If the plan fails, the execution system (described fully in chapter 4) returns the

circumstances of the failure, and the caching system can either try to reconstruct the

triangle table using updated initial conditions from the modeling system, or it can

consider scrapping it altogether.



CHAPTER 4

PLAN EXECUTION

The fourth and final component of our developmental system is the execution

module, the subsystem responsible for turning plans into real behavior in a physical or

simulated world. A valid plan improperly executed is little better than a broken plan,

and so proper execution is of vital importance to the success of our developmental

system.The ability to abort plans when they go badly is also important, especially

when uptime or unnecessary actions are costly. Each action an agent takes consumes

resources. If we are working in simulated environments, each experience generated

consumes time and memory. If we are working with a robot, additional resources

are used, such as battery life and machine life. 1 If we allow plans to run beyond

the point where there is no chance for success, then we are collecting experiences the

agent doesn’t necessarily need, and we are using time and energy that could be better

spent some other way.

In this chapter, we will discuss how plans specified as triangle tables are executed

by our system. We will also describe how our agent determines when plans are

not going well, and the steps our system takes to abort plans with little chance of

success. Before we go into the details of execution and monitoring, it is important to

understand action-taking in the domains we work with.

This dissertation was designed around real-world platforms like the Pioneer mo-

bile robot. These platforms come packaged with software controllers that allow a

1Robots have a limited lifetime, especially if they are allowed to crash into walls.
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programmer to issue motor commands for the various actuators at any time. The

Pioneer can be commanded to move forward, at 200mm/sec, and it will smoothly

accelerate until it reaches the desired velocity or until another motor command is

issued that tells it to stop or change its speed. Rotational, translational, and gripper

controllers of the Pioneer can all be in operation at the same time. Clearly, allowing

this kind of freedom would make planning and the execution of plans quite complex.

Turning and moving together produces a controller with dynamics far different that

either one alone, and varying the wheel speeds can result in a nearly boundless set

of possible sensory patterns. In our developmental model, we limit the complexity of

control by allowing only one active controller at a time. Furthermore, we discretize

continuous controllers to operate at fixed levels: we only allow rotation at±50deg/sec,

for example, or movement at ±250mm/sec. These controllers are activated, allowed

to run until a desired effect has been achieved, and deactivated.

For practical purposes, a time limit is placed on all experiences as well. The

turn and move controllers of the Pioneer are allowed to run for a maximum of three

seconds, and the gripper controllers are fixed in duration to the length of time it takes

for the gripper to fully close or open. There are two basic reasons for placing maximum

time limits on controllers. First, lengthy time series create a heavy computational

burden throughout the system. We have found that smaller snippets of activity are

more manageable and that longer traces do not necessarily offer any added utility for

the purposes of modeling and planning. Second, we use several offline algorithms for

execution monitoring. In the sections that follow, we shall see a suite of heuristics for

judging whether a plan should be allowed to continue or be aborted. Some of these

heuristics are based on how the execution of the plan is going and since a majority

of available time series analysis schemes useful for execution monitoring work offline,

the agent must periodically stop what it is doing in order to decide whether or not the

plan should be aborted. Placing a time limit on controller operation allows the agent



c©Matt Schmill 2003, preprint - do not distribute 104

to take stock of its latest experiences to determine whether a plan is proceeding as

expected. Note that controllers may be terminated before the time limit is reached,

as is often necessary during plan execution.

The GridSim simulator was built to be compatible with the execution model

of the Pioneer robot. The GridSim agent has controllers for moving, lifting, and

dropping that may be activated and deactivated. Each of the move actions take

approximately one second to traverse one cell in the grid, and the lift and drop

operators take that same amount of time to complete the act of lifting or dropping

debris. Each of the GridSim controllers are constrained to terminate in under one

second.

4.1 Executing Plans

Executing the plans generated by our system is relatively straightforward and

is based on the original STRIPS scheme. In STRIPS, steps of a plan are executed

sequentially, and after each step, a test is made to verify that the preconditions for

the next step have been achieved before moving on. This test is based on kernals,

rectangular subarrays of the complete triangle table. The ith kernal of a triangle table

is defined as the cells bounded by (i, 0), (i, i − 1), (n, 0), and (n, i − 1), where n is

the last row of the table. If all the expressions of the ith kernal are satisfied, then

the ith tail of the plan is applicable, and execution can continue at step i in the plan.

An example kernal is shown in figure 4.1. This figure shows the triangle table for

lift-debris as introduced in section 3.2.1, with the 2nd kernal highlighted. If all the

cells in this rectangular subarray are satisfied in the current state, then execution can

continue at step 2.

In simple domains with simple plans, it can be assumed that if after step i of

a plan, the (i + 1)th kernal should be satisfied and thus step i + 1 could be taken

next. If the kernal is not satisfied, it follows that something has gone wrong and the
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ccs−shape=3

scam−shape=3

scam−dist > 1.5

bay−shape=−1

scam−dist < 1.5

2 3
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current−state
0 1

move−s

move−s

3 lift

Figure 4.1. The 2nd kernal of the lift-debris triangle table.

planning agent can decide whether to abort or replan. With our planner and the

sensorimotor domains we work with, there are a couple of other possibilities. First,

if kernal i + 1 is not satisfied after step i is taken, the agent may need to execute

step i again. Because we have placed an upper limit on the duration of an action,

the controller of step i may have been deactivated before it fully achieved its desired

effects. If this is the case, the (i+ 1)th kernal will not be satisfied, but the ith kernal

will remain satisfied. A simple example of such a situation would be step 1 of the

plan of figure 4.1; the purpose of this step is to drive the value of scam-dist below

1.5. The time limit allows the GridSim agent to drive this value down a maximum

of 1 unit per experience. If in the starting state the distance to the debris to the

south were 3 or more, then it would require multiple executions of the first step to

drive scam-dist to the desired value.

The other possible contingency is that there are unnecessary steps in a triangle

table that can and should be skipped. The PFT planner produces plans from expe-

rience traces, and these traces may have been generated by a variety of controllers.

The agent may have been executing a plan to reach an unrelated goal, using the

entropy-based L0 controller, or just wandering when the exemplar was produced. It

is not uncommon for superfluous steps to appear in experience traces and make their
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way into a triangle table. In some of these cases, it is possible to eliminate these

steps if they do not interact with other steps since their corresponding column in

the triangle table will be empty, indicating that they do not achieve any later steps’

preconditions. In other cases, these extra steps will find their way into triangle tables

and must be dealt with at execution time.

All these contingencies can be handled by simply removing the assumption that

plans move sequentially forward after each step in the plan is taken. Our execution

module determines which step is next by taking the maximum value i for which the

ith kernal is satisfied in the current working triangle table. The value i may advance

one or many steps, not change at all, or there may be no i for which there is a satisfied

kernal. In the former case, the plan has created unexpected effects that have caused

the agent to lose its place in the plan, and the agent has no choice but to start the

planning process over.

This simple execution scheme allows our agent to repeat and skip steps as nec-

essary, but it also introduces the possibility that the agent could become stuck on a

single step in the plan without making any progress, or worse yet, the get caught in

a cycle since the control scheme can potentially revert control from step j in a plan

to some step i, where i < j. For this reason it is necessary to periodically test for

reasons to abort a plan.

4.2 Aborting Plans

In our system, deciding whether or not to abort a plan during execution is a

heuristic process. Rarely can the planner point conclusively to evidence that a plan

is doomed to fail; bad plans are usually built on bad models that give them an

apparent chance of success in spite of the weaknesses that will eventually cause them

to fail. However, it is possible to predict failure in some circumstances once plan

execution has begun. Each time an action is executed by our agent, it runs through
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a set of abort reasons to determine if there is evidence pointing toward failure. If any

one of the reasons should predict failure, a the execution module aborts the plan, and

returns the abort reason that predicted failure. The abort reasons can then be used

by the plan caching system to diagnose the failure and decide on what to do with the

aborted plan. Here are the abort reasons as currently implemented in our system:

Lost-The-NIP This abort reason is invoked when the execution module can no

longer find a kernal that is satisfied in the current triangle table. This happens

when there is no step in the plan with satisfied initial conditions, usually because

a step in the plan has produced unexpected results that clobber previously

satisfied plan conditions and do not achieve any conditions for a later step. We

call the highest-ranked satisfied kernal the next instruction pointer (NIP), and

hence this abort reason is called Lost-The-NIP.

Going-Nowhere This reason is invoked when a step in the plan is executed and has

no discernible effect on the state of the world. An example might be attempting

to lower the Pioneer robot’s gripper when it is already down. If lowering the

gripper is expected to achieve some conditions in the plan, then it is safe to

abort, since the action is not bringing about the desired effect.

The Going-Nowhere abort reason works under the assumption that plans

have no hidden state built into them. One can imagine situations in which this

might be an unsafe assumption. An example might involve an action whose

effects are delayed or unobservable (like pushing a button on a machine) but

affect the outcome of later steps in a plan. Our sensorimotor agents have no way

of representing hidden state, and we believe that solutions to these problems

are beyond the scope of this dissertation, and may occur in later stages of

development than we seek to model. In these later stages, it may be possible to

infer hidden state variables, and to use the activities learned by our systems to
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1. generate an initial condition tree for experiences with action an

2. add a state to the PFA for an for each leaf in the initial condition tree

3. examine each experience e with action an

• if e starts in PFA state si and ends in state sf , strengthen the directed edge
< si, sf in the PFA

Figure 4.2. The procedure for generating outcome PFA for domain actions.

try and model the behavior of these conceptual variables as they intermediate

the unfolding of plans, as has been suggested by Drescher [19].

PFA-Dead-End This abort reason is the most sophisticated and aggressive in our

system. The basic idea is that when an agent is executing a step n in a plan,

it has expectations of what will happen during that step. The expectations are

expressed symbolically, as by the ssc outcome classifier. If it takes action an,

it expects a certain outcome ô(an) to unfold, and that it will satisfy the initial

conditions of some future step in the plan. In general, the execution module will

repeat step n until ô(an) does unfold, and it has determined that the plan can

proceed to a later step. If it were possible to detect when ô(an) is unlikely to

ever unfold given the current sensory state, then it would make sense to abort

the plan. Suppose the Pioneer is in the middle of executing a plan step in which

it is supposed to approach a red object by moving forward. If the robot were to

hit a wall (that is not red), having hit the wall should be considered evidence

that a red object is unlikely to be encountered by continuing to move forward.

The PFA-Dead-End abort reason uses probabilistic finite automata (PFA)

to model which outcomes are likely to follow each other when an action is

repeated. Finite automata are graphs in which the nodes represent sensory

states and directed edges represent possible transitions between states. We

create PFA from the experiences of action an using the procedure in figure 4.2.
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First, a PFA state is created for each leaf in the initial condition tree for an.

Then, transitions between the states are added for each pair of states < si, sf >

for which there is an experience of type an that starts in PFA state si and

ends in PFA state sf . Each such transition < si, sf > is weighted by the

number of experiences that make that transition divided by the total number of

experiences that start in state si. The automata can then be used to determine

if a particular outcome is likely to unfold as a result of repeated execution of an

by performing reachability analysis from the current state to the state in which

the desired outcome is most likely to unfold.

Suppose we want to build a PFA that models outcomes of the drop action in

the GridSim simulator. The first step is to get the initial condition tree, which

is shown in figure 4.3. The tree is simple, and reflects two possible outcomes of

executing the drop action. If the cargo bay is full, the drop will result in the

outcome shown in the leaf to the left. If the bay is empty, the action will result

in no change in the sensory state, as expressed by the outcome in the leaf on

the right. This tree prescribes two PFA states, one for each leaf. The two states

of the PFA are shown in figure 4.4.

Next, the transitions are filled in. The drop action is very simple, and there are

only two transitions possible in GridSim. They are shown in figure 4.5. This

simple action illustrates clearly the situation that the PFA-Dead-End abort

reason was designed to detect: dead ends in the PFA for an action. Once an

agent finds itself in the state to the left of the PFA (where performing a drop

has no observeable effects), it will never be able to get out with the drop action,

and it is time to break from the plan.

A more complex PFA is shown in figure 4.6. This is a PFA built for the move-w

action after 500 experiences in the 8× 8 grid. Outcome labels associated with

PFA states and transition strengths are omitted for brevity. Note that the initial
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BAY−SHAPE
[−1][3]

D−D−N−N−N−N−N−N−N−N−N−N−N−N−U−U (2) N−N−N−N−N−N−N−N−N−N−N−N−N−N−N−N (28)

Figure 4.3. An initial condition tree for the drop action in GridSim.

BAY−SHAPE [3]
D−D−N−N−N−N−N−N−N−N−N−N−N−N−U−U (2)

BAY−SHAPE [−1]
N−N−N−N−N−N−N−N−N−N−N−N−N−N−N−N (28)

Figure 4.4. Two PFA states corresponding to the two initial condition leaves for
the GridSim drop action.

conditions generated by the modeling system make heavy use of landmarks to

the north and south to determine the outcome of an action, as is reflected by

the preponderance of conditions using the north and south facing cameras in

the PFA. Like the drop PFA, the move-w PFA contains a dead-end state, useful

for the PFA-Dead-End abort reason.

BAY−SHAPE [3]
D−D−N−N−N−N−N−N−N−N−N−N−N−N−U−U (2)

BAY−SHAPE [−1]
N−N−N−N−N−N−N−N−N−N−N−N−N−N−N−N (28)

1.0

1.0

Figure 4.5. The PFA for drop, fully constructed.
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SCAM−SHAPE [2]

SCAM−SHAPE [3]

SCAM−COLOR [1]

SCAM−SHAPE [3]

SCAM−COLOR [3]

SCAM−COLOR [2]

SCAM−SHAPE [3]

SCAM−SHAPE [1]

NCAM−SHAPE [2,3]

SCAM−SHAPE [1]

NCAM−SHAPE [1]

SCAM−DIST [4 ... 10]

SCAM−SHAPE [1]

SCAM−DIST [2.5 ... 4]

NCAM−SHAPE [1]

SCAM−SHAPE [1]

NCAM−SHAPE [1]

SCAM−DIST [0 ... 2.5]

Figure 4.6. A PFA for move-w.



CHAPTER 5

GOAL SELECTION

Most classical planning systems pursue goals that are generated exogenously, typ-

ically from a user. We are interested in autonomous development, though, and so

having goals fed to our planner from a human user is unacceptable. At the stages of

development we are considering, it is not assumed that even the most rudimentary

language understanding is present. We require an explanation for how an agent not

only achieves, but also generates its own goals. This is the task of the goal selection

system.

The goal selection system determines what the agent actually spends its time

doing (or attempting to do), and ultimately shapes the types of activities that the

agent will learn. This component to our developmental system can literally make or

break the process of development 1. As such, we would like the goal selection module

to generate goals which meet the following criteria:

• Plausibility: the system should produce goals that are possible for the agent

to achieve.

• Sustainability: the system should attend to the basic needs of the agent. This

includes vegetative needs like hunger, thirst, and fatigue, if they apply, as well

as related needs like aversion to pain. The goal selection scheme must keep an

agent out of trouble.

1Running a robot into a wall repeatedly tends to break it.
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• Learning: the system should provide an agent with opportunities to learn

about its environment.

• Purposefulness: the system should behave with purpose. Let us define an

agent that acts purposefully as one in which the decision to do something is

always based on some criteria, and not simply random.

Recall that we adopt the planning to act philosophy in our system. Planning to

act suggests that at the highest level of control, agents plan to act rather than to

achieve states. This idea is motivated by Piaget and others who developed theories of

development based on the acquisition and repetition of schemas (repeatable chunks

of activity). These theories implies that it is the activity, not the state, that is

rewarding. Our discussion of planning in chapter 3 assumed that goals were generated

in accordance with planning to act, and consequently we ensured that all goals met

the first of the four criteria listed above. Planning to act constrains the space of goals

to encompass only situations that have been achieved before, and consequently can be

assumed to meet the plausibility constraint.

In the remainder of this chapter, we describe a goal selection scheme that chooses

among the goals that are available to an agent. Our goal selection scheme com-

prises three parts: a basic exploratory controller, called the level-zero L0 controller,

a high-level control scheme called a motivational system that weighs the needs of the

agent in making a decision about what to do, and a system of reflexes for biasing the

developmental trajectory toward important results. We describe each of these sys-

tems, and show that our goal selection system satisfies the remaining three criteria:

sustainability, learning, and purposefulness.
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5.1 Acting With Purpose

One of the criteria for the goal-selection component of our system is that it guides

an agent to always act with purpose. An intelligent agent will always have a reason for

the things it does, whether that reason seems reasonable or not. We may break down

activity into two types: exploitative and exploratory. Exploitative activity attempts

to utilize learned models to reap the rewards an environment has to offer. Exploratory

action seeks to improve models, so that exploitation might be more effective in the

future.

Exploitative behavior is always purposeful. An agent engages in foraging behavior

to find food to eat, or rests to recharge its batteries. Exploratory behavior, however,

is not always traditionally purposeful. Many early systems, when the decision was

made to explore, engaged in random behavior for some period of time. While the

high-level aim of an agent in these systems is to explore, there is no explicit connection

between each action and the goal of exploration. These agents, in acting randomly,

may or may not actually explore in the sense that they may or may not encounter

new experiences that allow them to improve their models as a result of what they do.

They do not act with purpose.

In this section, we will outline a baseline controller that our agent can engage

when it has no models to exploit or no need for exploitative behavior. We call this

controller the Level 0 (L0) controller. It is a simple, greedy exploratory controller

that recommends actions about which the modeling system has the least certainty.

The agent, by taking the actions recommended by the L0 controller, acts with the

purpose of improving its weakest models.

Our L0 controller is based on the entropy statistic. Entropy has many forms in

the various sciences. The one we use here is based on Boltzmann’s entropy, sometimes

denoted by h.
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h = −kΣi(pilog(pi)) (5.1)

Boltzmann derived this equation in the service of statistical mechanics, and it

was later proved by Claude Shannon to satisfy the needs of information theory in

expressing uncertainty about messages sent from an unreliable source [75]. In the

information theory context, k = 1, and pi is a probability value for a given bit of a

message.

This same entropy statistic can be used to express uncertainty in any system that

makes probabilistic predictions. In this case, i iterates over the possible predictions,

and pi is the probability of i coming true. Note that in cases where a prediction can be

made with absolute certainty, there is only one possible prediction, with probability

1, and pilog(pi) evaluates to zero. In the worst case, the probability distribution over

possible outcomes will be uniform. That is, pi is the same for all possible outcomes.

If there are two possible outcomes, the maximum entropy will be where both values

for pi are the same, and h = −(.5log(.5) + .5log(.5)), or 1. If there are three possi-

ble outcomes, the maximum entropy is approximately 1.58, with four outcomes, the

maximum entropy is 2, and so on.

We use the entropy statistic to compute predictive uncertainty at the leaves of

initial condition trees. Consider the tree generated using Pioneer-2 data collected

during move actions shown in figure 5.1. Each leaf of the tree corresponds to a

region in the state space where, when a move action was taken in the past, one or

more distinct outcomes were observed. The outcomes are listed with their observed

probability, and these results can be used to compute uncertainty about what will

happen if the Pioneer-2 executes a move action from any sensory state. For example,

if the Pioneer-2 is sitting in a state where the vis-x sensor is reporting a value of

−10, the agent is in a state represented by the second leaf from the left in the tree

of figure 5.1. There have been four observed outcomes of move in that region of the

state space. The entropy calculation is
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Vis-X

Vanish-Right (80%)
Approach-Right (20%)

Approach-Small (36%)
Approach-Right (36%)
Approach-Vanish (18%)
Approach-Big (9%)

Approach-Ahead (67%)
Approach-Vanish (33%)

Approach-Big (40%)
Approach-Ahead (40%)
Approach-Vanish (20%)

Approach-Small (62%)
Approach-Vanish (38%)

Move-Speed
[min..0][0..max]

Move-Speed
[min..0][0..max]

Approach-Left (40%)
Approach-Big (40%)
Approach-Small (20%)

Vanish-Left (80%)

[min..-58][-58..0.5][0.5..16][16..62][62..128][128..max]

Noisy-Dot (20%)

Retreat-Left (100%)
See-Nothing (93%)
Noisy-Dot (7%)

See-Nothing (63%)
Discover-Left (26%)
Discover-Right (11%)

Approach-Big (100%)

Vis-Width
[min..17][17..37][37..53][53..max]

Figure 5.1. An initial condition tree generated using precursor phase data from the
Pioneer-2.

−(.36log(.36) + .36log(.36) + .18log(.18) + .09log(.09))

which is approximately 1.64. Each action has its own such tree, and each state of

the Pioneer-2 corresponds to a single leaf in the trees, so in any context, an entropy

value can be calculated for each action. These values represent the uncertainty in

the current models, and the L0 controller can simply recommend the action with the

greatest entropy value. This allows the agent to focus exploration based on where

the models are most uncertain, and to act with purpose all the time.

5.2 Motivation and Goals

In the very early stages of development, opportunities for exploration are over-

abundant. Nearly any action in any state can provide valuable information and

consequently an agent’s models change rapidly during this early period. Due to these

unstable and inaccurate models, opportunities for exploitation are comparatively few.

During this stage, the L0 controller is of great use in selecting the most profitable of

the available opportunities for exploration.

Eventually, though, models will begin to stabilize and become accurate. Predic-

tion, planning, and exploitation become possible, and an agent is offered the oppor-

tunity to reason about outcomes rather than actions. The idea of planning to act
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finally comes into play, and goal selection becomes a balancing act of deciding which

of all the outcomes an agent knows about will be the best to pursue or whether a

situation is appropriate for some opportunistic exploration. The details of how one

manages the balancing act between exploration and exploitation determine how well

the criteria of sustainability and learning are attended to.

We manage the balance between exploitation and exploration (sustainability and

learning) with a set of models that comprise a motivational system. The motivational

system enumerates the various motives an agent might have for acting, such as hunger,

pain, fatigue, and curiosity, and rolls them into a model that can be used to evaluate

and select the goals of our system.

The motivational system can be thought of as defining a preference relation over

the outcomes that an agent knows about. Let O denote the set of all outcomes that

our agent knows about. The preference relation for agent x, ψx(o1, o2, st), holds iff in

sensory state st agent x prefers the outcome o1 over o2. The goal of the system at

time t, then, is og such that ∀on6=g(ψx(og, on, st)).

If we were interested only in the learning criterion, we could base ψ on a metric

such as information gain or maximum entropy as the L0 controller does. Every

decision that agent x would make would be based on the amount of information to

be gained about a particular outcome. Agent x would be constantly planning to

achieve outcomes for the purpose of exploration. Likewise, if the agent had some

single, all-encompassing vegetative concern, such as keeping its battery from running

out, we could base ψ solely on the expected loss or gain of battery power. This

agent would constantly be building plans that would maintain or increase its battery

level. While both of these formulations of ψ satisfy the purposefulness criterion, both

will also suffer the drawbacks of ignoring one of the four criteria for effective goal

selection. The exploratory agent will likely run out of battery power, defeating the

sustainability of the motivational system, while the agent obsessed with its batteries



c©Matt Schmill 2003, preprint - do not distribute 118

curiosity
µ

fatigue
µ

pain
µ

0 1

1

accomodation(a)

00

1

battery-level
0 14V 0 100

0

-1

current-pain

Figure 5.2. Coefficient functions for each of the Pioneer-2’s primary motivational
factors.

may never explore enough to find the most efficient policy for keeping its batteries

running strong, stifling the learning aspect of development.

An agent whose goal is to truly explore the affordances of its environment, all

the while ensuring to stay alive, must attend to a variety of factors that motivate

its behavior. The relation ψ should reflect the variety of these factors. For a mobile

robot exploring the surface of Mars, for example, ψ may reflect three distinct factors:

fatigue, the need of the robot to maintain battery level, crash avoidance, the need

of the robot to keep from colliding with other objects at high speeds, and science,

or the requirements of the Mars rover to collect data about the surface of Mars by

collecting samples and exploring. Were the rover a learning agent, we might add

in curiosity, a factor that would compel the rover to sometimes take actions that

improve its performance through learning about the dynamics of operating on Mars.

We call each of these components of behavior a motivational factor. Individually,

each expresses a basic need of the agent, and collectively, they comprise behavior.

In our model of motivation, we represent each motivational factor F with a drive

coefficient µF (st). The drive coefficient expresses the relative importance of F in

state st; the importance of the fatigue factor, for instance, may increase as the battery

voltage decreases. Drive coefficients represent internal states of the agent, and may or

may not be reflected in the sensory aparati. For this reason, when we refer to states in

this chapter, we are referring to not just sensory configurations, but also any internal
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state measures relevant to motivation. An agent may have a motivational factor for

frustration, for example. Frustration is not reflected anywhere in the sensory aparati

of an agent. Rather, it is an internal state. Perhaps frustration is the ratio of broken

plans to successful plans over the last 20 minutes of operation. For the purposes of

learning planning operators, and using those operators in planning, internal states

have no utility, but for the purpose of selecting goals, internal states like frustration

form the basis of motivation. States referred to in this chapter should be thought of

composite sensory/internal states.

Each action outcome on will have an expected motivational payoff E∆(on, st) were

on to be achieved from state st. The product of the drive coefficient and the expected

payoff yields an expected factor value of F for on. The sum of these products over

F ∈ F , where F is the set of all motivation factors, is the desirability of outcome on

in state st, denoted by ρ.

ρ(on, st) =
∑

F∈F µF (st)E∆(on, st)

(5.2)

and

ψ(on, om, st) ⇐⇒ (ρ(on, st) > ρ(om, st))

(5.3)

It is worth noting that we consider each factor to comprised an internal, hard-wired

(perhaps genetically determined) component, µF (st), and a component contributed

by the environment which must be learned, the quantity E∆(On, st). Figure 5.2 shows

some possible coefficient functions for three sample motivational factors designed for

the Pioneer-2 mobile robot. The motivational factors pictured are:
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• Fatigue The coefficient function for fatigue depends on the robot’s battery

level, and is near zero when the battery is fully charged at 14V, indicating that

fatigue plays no part in desirability in the fully charged state. As the battery

level drops, though, the coefficient rises, most dramatically in the range 10V-

12V. Fatigue becomes an issue in this range, as the robot’s effectors start to

become unreliable when its voltage drops below around 10V.

• Pain We use a simulated pain sensor for the Pioneer-2 mobile robot. Sudden

contact with immovable objects produces surges of activity in the pain sensor.

The coefficient function for pain, in contrast to fatigue, starts in the negative

range, indicating that the possibility of pain reduces the desirability of an ac-

tivity regardless of whether the robot has recently experienced pain, and when

the robot has recently experienced pain, the inhibiting effect of pain avoidance

only increases.

• Curiosity The curiosity coefficient depends on the activity under considera-

tion, and a measure called accommodation. The role of the curiosity drive is to

provide an analog for the action entropy metric used in the L0 controller to ac-

tion outcomes. As the utility of the L0 controller drops off, the drive to explore

and learn is picked up by the curiosity component, which attempts to identify

action outcomes about which relatively little is known. Accommodation is a

measure of the agent’s familiarity with a particular outcome, and comprises a

measure of the uncertainty in the initial conditions for the particular outcome

and the number of times an outcome has been experienced. Accommodation is

based on something we call the moderate novelty effect. Outcomes that are very

unfamiliar or very uncertain can daunting to a developing agent, and curiosity

to explore them is muted. Similarly, outcomes that are accurately modeled or

outcomes that are uncertain but have been experienced frequently no longer
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generate interest. It is the space between utter unfamiliarity and complete fa-

miliarity – the space where an outcome is moderately novel – where a developing

agent is most interested in exploration. The result of accommodation on curios-

ity is that if an activity is moderately novel, then accommodation is low, and

curiosity makes a positive contribution to that activity’s desirability. As the

agent exercises the activity, and builds better models of how the activity works,

accommodation increases, and the contribution of curiosity to the desirability

of the activity tapers off. The curiosity coefficient reacts to the novelty of an

activity according to a bell shaped curve, in a manner consistent with infant

accommodation studies [70]. The curiosity factor asserts that all other things

equal, an agent prefers to engage in activities it can learn most about.

Each outcome of the Pioneer-2 will have an expected payoff for each of the above

factors. They are computed each time an experience is generated by differencing the

internal states associated with the motivational factors before and after an outcome is

experienced. The motivational payoff is stored along with each outcome profile with

a little help from the modeling system, and may be retrieved as an expected value as

needed by the motivational system to compute the desirability of any given outcome.

The preference relation ψ, based on desirability and motivation, gives an agent a

means for selecting a goal. It can simply choose the outcome that maximizes d to

beat out all other outcomes in ψ. Next, we will evaluate at the motivational system

in terms of the criteria for goal selection outlined at the beginning of this chapter.

5.3 How Motivation Drives Development

The two primary jobs of the motivational system are to keep the agent out of trou-

ble and to provide learning opportunities for the operator modeling process. These

two priorities are expressed implicitly in the motivational system for an agent, and
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the design of the motivational system is such that the balance between exploration

and exploitation (or, variously, sustainability and learning) is managed automatically.

Our motivational system manages this tradeoff in much the same way that counter-

based directed exploration policies studied in the reinforcement learning literature

do [81]. That is, all other things equal, an agent has a slight preference for improving

deficiencies in known activity models over exploiting them for rewards. When it is

clear that pursuing some goal will result in information gain without putting the

agent at risk, it will usually go for it. When vegetative needs become pressing, they

will express themselves through their respective drive coefficients and dominate the

preference relation. So long as an agent has the capacity to address its vegetative

needs through planning, it will do so, and then the slight preference toward learning

will become the primary influence over the preference relation.

The questions we wish to answer here are, “can the tradeoff be managed effi-

ciently by our motivational system?” and, “does the curiosity factor properly direct

exploration?” We have devised a set of experiments to answer these questions, but

before we present these experiments, it is important to draw attention to an aspect of

exploration in our model of development that is not common to all learning systems.

In most reinforcement learning systems, an agent has access to the entirety of its

action and state spaces, and those things do not change over time. This makes it

possible to reason about areas of the state space it has not visited or actions it has

not yet executed in certain contexts. This simplifies exploration because an agent

can reason explicitly about what it does not know or has not yet encountered. This

is an important and powerful faculty. Our system reasons about outcomes during

planning, and these outcomes are not known a priori. Agents in our model cannot

reason about outcomes until they have experienced them. Thus there are two aspects

to exploration in our system: first, the agent must discover the outcomes available
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to it in its environment, and second, an agent must effectively improve uncertain

outcome models until they become accurate,

Since our motivational system is limited to reasoning about things it has already

experienced, it is not clear that it addresses the discovery aspect of exploration. But

we posit that in many cases, exploration can be an indirect result of exploitation done

with incomplete or incorrect models. Said differently, a planner working with poor

models will generate plans that create unexpected results that an agent can learn

from. Our claim is that our system manages to effectively discover action outcomes,

improve models of those outcomes, and exploit them for rewards.

5.3.1 Experiments

We have run two sets of experiments to illustrate how our motivational system

manages the tradeoff between exploration and exploitation. The first is based on a

simple block painting robot, and the second is based on a generalized set of randomly

generated Markov decision processes.

5.3.1.1 Block Painting Domain

The block domain consists of a simulated robot working in a parts preparation

factory. The robot has a gripper and a paint gun, and sensors to detect whether

or not it is holding something, whether or not what it holds has been painted, its

current fatigue level, and its current paint level. As parts pass by the robot on a

conveyor belt, the robot may attempt to pick a block up, open its gripper to drop

what it is holding, fire its paint gun at whatever is in its gripper, rest, or activate a

refill mechanism to refill its paint gun.

The outcome of each of its five actions is based on the observable changes in the

four sensors; if the robot sprays its paint gun, it may paint a block, it may repaint

a block, it may paint its own gripper, or if it is out of paint nothing will happen at

all, for example. Each of these outcomes has a unique Delta-Simple profile, which
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for the purposes of this discussion we will denote with more informative titles like

lift-block and paint-block.

This particular robot acts under the influence of 3 motivational factors: curiosity,

fatigue, and reward. The first two are the same as those we described for the Pioneer-

2. Curiosity compels the robot to exercise its outcomes. Excessive fatigue may cause

some actions to fail unexpectedly. Reward is an exogenous signal used to indicate to

the robot when it has done something good (like paint and release a block) or bad

(like attempt a refill when its paint gun is already full).

We can use this simple domain to illustrate how exploration can occur when an

agent attempts to exploit inaccurate models. An example often occurs within the first

few experiences of this robot. Suppose the agent, right after being turned on, executes

the grasp command. It picks up a block, and receives feedback that it has experienced

a new outcome, which for this discussion, we will call pick-up. Immediately, this

outcome will be the most highly rated by our motivational system, not only because

it is the only available outcome, but because of its novelty. The goal selection system

will suggest that the robot try and reproduce it. Due to its poor model of how

pick-up works, the planner will assume that there are no initial conditions to pick-up,

and that activating the grasp controller will produce the desired outcome. Since

the robot is already holding something, the grasp controller experiences a different

outcome. Attempting to grasp with the gripper already engaged will produce the

pu-fail outcome. The robot has learned a new outcome due to planning with an

incomplete model.

5.3.1.2 Random MDP Domain

Rather than hand-build increasingly sophisticated domains such as the block

painting domain to show generality and scalability, we decided to apply our motiva-

tional system to randomly generated Markov decision processes. A Markov decision
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process (MDP) consists of a set of ns states (denoted Q) and a set of na finite actions

(denoted Σ). An agent occupies a single state in Q, and can move from state to

state by executing actions in Σ. Uncertainty is allowed in MDP action execution, but

here we will deal with deterministic action outcomes. MDPs must satisfy the Markov

property: any transition from state si to state sj taken as a result of action execu-

tion must depend only on the state of the system at si and the action taken. The

MDP representation is one often used in planning, since the representation facilitates

the use of many graph algorithms such as reachability analysis. We use MDPs as a

general model to test the extensibility of our motivational system to exploration in

increasingly sophisticated domains. Our MDP agent responds to two motivational

factors: novelty and reward. Novelty is as described previously, and reward is simply

a positive reinforcement signal that comes to the agent as a result of experiencing

certain outcomes in the MDP.

The procedure we use for generating random MDPs is shown in figure 5.3, and

can be outlined as follows. A user specifies the complexity of the MDP in terms of

the number of states, ns, and actions, na, available to the agent. A set of ns states is

generated and they are broken down into randomized subgroups. Then, transitions

are added to the graph. Each transition in the graph corresponds to a single action

outcome in the domain, and is randomly assigned to one of the actions. Transitions

are added systematically to ensure each state is reachable from any other state and

that there are no dead ends. States within subgroups are generally tightly connected,

with a few transitions in each subgroup leading to a new subgroup. Default outcomes

are added to the graph (which do not cause state transitions) until each action has

an outcome in each state. Once a legal graph has been generated where all states are

reachable, rewards and penalties are added to the graph.

The MDP structures that we generate are intended to resemble a typical domain

for activity learning. The small, tightly connected subgroups correspond to simple,
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1. Generate a state variable with a user-specified number of states.

2. Generate a user-specified number of generic actions.

3. Break the states up into subcycles of random size.

4. Generate transitions within the subcycles.

5. Generate transitions between the subcycles such that there are no dead-ends or un-
reachable states in the process.

6. Generate an outcome for each transition and assign it randomly to an action.

7. For each state-action pair that does not yet have a unique outcome, assign a “default
outcome” that does not change the state of the agent.

8. Assign “reward” values for each outcome. In our experiments, there is a 10% chance
of an outcome having a negative reward in the range [−0.5 . . . 0], and a 10% chance
of an outcome having a positive reward in the range [0 . . . 0.5].

Figure 5.3. The procedure for generating random MDPs with motivational payoffs.

action: A-SAC629
outcome: A-SAC629-OC639
reward: -0.129

V626 V625 V622

V624V623

V621

Figure 5.4. A sample, randomly generated MDP.
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repeatable cyclic activities, and the longer, intergroup transitions represent bottle-

neck outcomes that change the focus of an agent to new subgroup activities. A small,

randomly-generated MDP is shown in figure 5.4. Outcome labels are omitted for clar-

ity, as are self-transitions that denote the default outcomes of step 7 in the generation

procedure. A single outcome label assigned to one of the transitions is shown, along

with its reward value. In the full MDP, each transition is assigned such an outcome

label. Note that each state in the MDP is reachable from any other state via a legal

sequence of actions.

5.3.1.3 Results

Our experiments with these two learning domains were intended to show two

things. First, that exploration could be efficiently and effectively managed by our

motivational system. This includes both senses of exploration: discovering the un-

known outcomes and exercising the outcomes to build strong models once they are

found. Second, we wanted to show that the transition from exploration to exploita-

tion would be smooth, and that the transition to full-on exploitation would not occur

until strong models for all operators had been learned. It is also our goal to show

that the long-term exploitative behavior is optimal or near-optimal with respect to

the amount of reward that can be achieved by an agent in the domain. To do this, we

let the motivational system control simulated agents in each domain until behavior

became fully exploitative and stable for several hundred steps. Each time a plan is

generated to achieve an outcome, we record the desirability levels of each of the known

outcomes and increment outcome counts each time one is experienced. This allows

us to examine the long-term behavior of the system in terms of which outcomes are

dominating ψ over time (and thus are selected as goals most often).

For the purposes of these experiments, we implemented a simple planner and

learning schedule to isolate the effects of the motivational system from nuances in
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the full-blown planning and modeling systems described in previous chapters. The

planner here is a simple generate-and-test planner that uses the simulator to evaluate

whether or not it thinks a plan will succeed. It is purposely allowed to generate

illegal plans if it has not yet experienced the outcomes that would be necessary for

the planner to identify them as illegal. An example of an allowable but illegal plan

would be the grasp plan described in the description of the block painting domain.

The agent does know about the pick-up outcome, and thus it can use it in plans, but

since it has not experienced pu-fail, it cannot verify that the plan would fail. Once it

has experienced the pu-fail outcome, the planner will be able to recognize that simply

executing a grasp will fail to produce the pick-up result in this simple example. In

each experiment, the agent was initialized with no knowledge of its domain, and the

motivational system was engaged.

Plots of the desirability of various outcomes in the block painting domain are

shown in figure 5.5. In figure 5.6, one sees occurrence counts for the outcomes in

the block painting domain. The results represent a single run of the experiment, but

results are similar across trials and different starting configurations. By 60 steps into

the simulation, all 19 outcomes have been experienced by the simulated agent. By

about 100 steps into the simulation, the effects of novelty for 16 of the 19 outcomes

have dropped to levels sufficient to make them undesirable except as steps in a plan

to achieve some other outcome. The effects of novelty can be seen in each of the

outcome plots of figure 5.5; after the outcome is discovered, desirability rises to a

sharp peak and then tapers off in the typical bell-curve shape. We call the effect of

novelty being driven down to levels where an outcome becomes undesirable to exercise

habituation. Habituation is reflected in the desirability chart when the desirability

plot for an outcome is driven down and becomes dominated by the desirability of

another outcome. This is easily observed in the time period between about 300

and 430 steps of figure 5.5 where the desirability of repaint sinks below that of drop-
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completed-block. The desirability of repaint continues to oscillate as the paint levels of

the gun change (recall that attempting a refill on a full paint gun results in a penalty),

but never actually exceeds the desire to achieve rewards by executing drop-completed-

block. At around 300, exploration has for all practical purposes stopped, and the robot

has settled into a routine of painting and dropping blocks. This is reflected in the plot

of outcome counts, where the steps required for dropping a painted block (pick-up,

paint-block, and drop-completed-block2) continue to be reinforced. Note that refill and

rest also continue to be executed even though their individual desirabilities are low.

This is because they are periodically included in plans when fatigue and paint level

become a factor in the outcome of the plan for drop-completed-block.

Figures 5.7 and 5.7 show plots of desirability versus time and outcome counts

versus time for a 5 action, 10 state, 22 outcome MDP. Outcome labels, which are

randomly generated tokens like A-SAC346-OC373, have been omitted from the graph

for clarity. As in the block painting domain, the 22 outcomes have all been discovered

by step 100, and the most desirable outcome has distinguished itself by 200 steps into

the simulation. Beyond that point, only six outcomes continue to be executed as plan

components to exercising the outcome with the highest Ereward
∆ .

Figures 5.9 and 5.10 show desirability and outcome counts versus time for a

larger MDP with 10 actions, 20 states, and 44 outcomes. In this problem, our simple

planner was bogged down with a very large search space of 44 operators, and due to

time constraints, we cut the trials short after 210 steps. Still, the system managed to

find 39 of the 44 possible outcomes after only 140 steps, and had become focused on

a sequence of two rewarding outcomes shortly thereafter. Interestingly, as the graph

of outcome counts shows, one of the highly rewarding outcomes had been discovered

almost instantly. Over the course of exploring novel outcomes for the next 140 steps,

2The plots for drop-completed-block and paint-block are virtually the same in figure 5.6, and appear
to be a single plot in the graph.
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Figure 5.5. Desirability levels versus time for each of the unique action outcomes in
the block paining robot domain.

the agent came across a new rewarding outcome. Soon after, the agent entered into

a policy of alternatively planning for the original outcome and the new outcome, the

two of which form a cycle, one leading into the other.

Empirical data from both the block painting domain and the randomly generated

MDP domain indicate that the combination of our motivational system and a classical

planner can effectively explore a domain, and as necessary (or in the absence of

anything to explore) effectively exploit the affordances of the domain.

5.4 Reflexes

As we scaled up the complexity of the randomly generated MDPs in our exper-

iments with the motivational system in the previous section, complete exploration

became increasingly difficult for our agent. There are two reasons why domain com-

plexity presents a challenge to exploration. First, there are simply more outcomes

that must be discovered and modeled. Second, and perhaps more importantly, out-
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Figure 5.6. Outcome counts versus time for each of the unique action outcomes in
the block painting robot domain.
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Figure 5.7. Desirability levels versus time for outcomes in a randomly generated
Markov process domain with 5 actions, 22 outcomes, and 10 states.
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Figure 5.8. Occurrence counts for the outcomes in a randomly generated Markov
process domain with 5 actions, 22 outcomes, and 10 states.
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Figure 5.9. Desirability levels versus time for the outcomes in a randomly generated
Markov process domain with 10 actions, 44 outcomes, and 20 states.
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Figure 5.10. Outcome counts for the outcomes in a randomly generated Markov
process domain with 10 actions, 44 outcomes, and 20 states.

comes can become increasingly isolated in the larger sensory spaces. The reason is

best illustrated with an example MDP domain.

Consider the MDP of figure 5.11. It is nearly the same as the sample MDP of

figure 5.11, except that two sates have been added. Note that state V627 can only

be reached through one particular action taken in state V624. State V628 can only

be reached through one particular action taken in state V626. Furthermore, state

V627 has two transitions leading out to states distant in the graph. The result is

that state V628 is “isolated” in the graph; during a random walk, this state is less

likely to be visited on average than any other state.

In some cases, infrequent events or outcomes are unimportant. In these cases,

we must accept that they may not be visited. Without a priori knowledge that they

exist, there is no principled way to guarantee they will be discovered. In some cases,

isolated outcomes may be important. Suppose the outcome that leads from V627 to

V628 is the only outcome with a motivational payoff for some survival factor such

as fatigue. It is vitally important for the agent to learn this outcome if it is ever to
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Figure 5.11. A sample domain illustrated as an MDP.

attend to its fatigue drive. Similarly, suppose state V628 is a “bottleneck” state, and

the only way to a large portion of the state space is through V628.

An example of a bottleneck situation is the lift-debris outcome in the GridSim

domain. All of the outcomes associated with dropping debris, including dropping

debris into a dropoff cell (which might produce a reward) are only possible after a

successful lift-debris experience. The lift-debris is an important experience for an

agent operating in the GridSim world to have, and it is an isolated action. The

agent must be in a grid cell with debris with the bay empty for it to work, and only

one of the six effectors will produce the result. On a random walk in an 8 × 8 grid,

with 3 piles of debris, the lift-debris has less than 2% chance of occurring on any given

step.

Now consider a robot domain, or worse yet, the world of a human infant. The

possibilities for exploration are nearly limitless, and the stakes are greater if particular

outcomes are not encountered. In these cases, a behavioral bias toward important

outcomes provides a distinct advantage. In humans, we call these behavioral biases

reflexes. Reflexes are automatic, unlearned reactions to stimuli from the environment,

and human infants exhibit many that serve a variety of purposes in development. Here

are a few reflexes common to human infants:

• Sucking When an object is near a healthy infant’s lips, the infant will begin

sucking immediately. This reflex helps the child get food, and is an instinct gen-

erally necessary for survival. The reflex also gives the infant experience sucking
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so that it can reproduce the behavior when this reflex disappears, usually by

three weeks of age.

• Grasp The palmar grasp reflex is observed when the infant’s palm is touched

and when a rattle or another object is placed across the palm. The infant’s

hands will grip tightly. This reflex disappears the first three or four months

after birth, and seems to be aimed at providing experience with grasping, and

important bottleneck activity later in life.

• Stepping This reflex can also be observed in normal full term babies. When

the infant is held so that the feet are flat on a surface, the infant will lift one foot

after another in a stepping motion. This reflex usually disappears two months

after birth and reappears toward the end of the first year as learned voluntary

behavior. This too is apparently an evolutionary mechanism for strengthen-

ing important musculature and providing automatic experience with another

activity important later in life.

Healthy human infants have many such reflexes. They provide for the infant’s

survival early on, produce behavioral bias for learning, and exercise specific muscu-

latures so that they will be ready when behaviors that need them are learned. Our

developmental schedule is remarkable, with reflexes that appear and disappear ac-

cording to predictable timetables, and some, like the sneezing and blinking reflexes,

that stay with us throughout our lives.

Reflexes provide such a developmental advantage where outcomes are unlikely or

isolated that we include them in our model. An analog to the grasping reflex can be

implemented for the GridSim agent and the Pioneer-2. They are specified as simple

stimulus-response pairs and are integrated into the motivational system inside the

action-taking cycle. Our simulated reflexes interrupt plans, as human reflexes do,

and may appear and disappear as human reflexes do.



CHAPTER 6

EVALUATION

In chapter 1.4, we established two critical measures of performance for our system

design. First, we established a metric for rating the accuracy of the system’s models.

Given a state s, and an action a, the model accuracy for an agent is the probability

that the agent can predict the outcome of a taken in state s. Next, we established

a metric called facilitation that reflects how well the planner works. Given a goal

outcome o, and a set of initial conditions IC(o) for o, facilitation measures the proba-

bility that the agent can arrive at IC(o). Once the agent establishes IC(o), the agent

will achieve its goal outcome to whatever accuracy the models are working at.

We further refined the facilitation metric to isolate two major factors that influence

overall facilitation. The statistic coverage measures facilitation as a percentage of the

overall state space from which a given outcome o can be facilitated. The statistic

capability measures the percentage of the total set of outcomes that can be facilitated

from a given state.

An agent that becomes competent at acting in its environment should see im-

provements in accuracy, coverage, capability, and overall facilitation as it collects

experiences interacting with its environment. In the remainder of this chapter, we

will look first at how accuracy changes over time, and once it is established that

a reasonable baseline for accuracy can be achieved by our system, we move on to

coverage and capability. In each of the studies, we will implement our developmen-

tal architecture on a nesw agent operating in the GridSim domain (described in

section 1.1.1) as a testbed. With this simulator, we can reduce and control sources

136
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of variance exogenous to our system (such as sensor noise and nondeterminism), as

well as enumerate the effective state space. This will allow us to get truer measures

of accuracy and facilitation, as well as make performance claims with fewer caveats

pertaining to the domain.
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6.1 Model Accuracy

A plan built by our system is only as good as the models it is built on. Ultimately,

the final step in a plan (the goal step), designed to bring about a goal outcome, only

has a chance to succeed if the initial conditions for that last step are accurate. In

this section, we evaluate the modeling system to verify that models do improve as the

system collects experiences, and that a level of accuracy can be obtained to warrant

further experimentation with the planning system.

Recall the following definitions introduced in section 1.4:

• o(s, a) refers to an actual outcome of taking action a in state s

• p(o|s, a) refers to the true probability that outcome o will result when action a

is taken in state s

• p̂m(o|s, a) refers to the estimate of p(o|s, a) made by some model m

• ôm(s, a) refers to an outcome predicted by model m (argmaxo p̂m(o|s, a))

Now recall the concept of disparity between a predicted outcome ô(s, a) and an

actual outcome o(s, a). In section 1.4, we defined a winner-take-all (wta) disparity

metric as:

dwta(ô(s, a), o(s, a)) =















1 if ô(s, a) = o(s, a)

0 otherwise

(6.1)

We now define two additional disparity metrics based on the ssc schemes described

in section 2.1.2. Recall that these schemes redescribe an outcome by analyzing and

producing a symbol string for each of the sensor streams in an experience. A symbolic

description of a GridSim experience, generated by the Delta-Simple filter, might
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(bay-shape up) (bay-color up)

(n-camera-color nc) (n-camera-shape nc) (n-camera-dist nc)

(e-camera-color nc) (e-camera-shape nc) (e-camera-dist nc)

(s-camera-color nc) (s-camera-shape nc) (s-camera-dist nc)

(w-camera-color nc) (w-camera-shape nc) (w-camera-dist nc)

(ccs-shape down) (ccs-color down)

Table 6.1. A Delta-Simple outcome description.

appear as shown in table 6.1. This table lists each sensor along with the ssc-generated

symbolic label for that sensor time series in the given experience. The symbolic de-

scription expresses that the bay-shape and bay-color sensors exhibit upward trends,

ccs-shape and ccs-color both show downward trends, and the directional cameras

all exhibit no change. This is the characteristic Delta-Simple description for the

experience of a GridSim agent lifting an item into its cargo bay.

A convenient shorthand for outcomes described with the Delta-Simple filter is

to use a single letter abbreviation for each sensor trend, seperated by dashes, in the

order presented in table 6.1. The following string is shorthand for the description of

table 6.1:

U-U-N-N-N-N-N-N-N-N-N-N-N-N-D-D

The two disparity metrics are based on comparing symbolic profiles, sensor by

sensor. The first we call Hamming disparity, and is an adaptation of Hamming dis-

tance to our symbolic representation.1 The Hamming disparity between two outcome

strings is defined as:

dh(ô(s, a), o(s, a)) =

∑

x∈S dwta(ôx(s, a), ox(s, a))

|S|
(6.2)

Where ox(s, a) refers to the xth symbol of outcome o and the winner-take-all

disparity between two symbols is 0 if they match, 1 if they do not. Hamming sums

1Richard Hamming. Coding and Information Theory. Prentice-Hall, 1980. ISBN 0-13-139139-9.
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this sensorwise disparity over all sensor pairs, essentially counting the number of

sensorwise mismatches. This count is divided by the number of sensors to limit

Hamming disparity to the range [0 . . . 1]. As an example, consider the following two

outcomes:

U-U-N-N-N-N-N-N-N-N-N-N-N-N-D-D

D-D-N-N-N-N-N-N-N-N-N-N-N-N-N-N

These outcomes differ in 4 of the sensor encodings (the first two and the last

two), and so the summation in equation 6.2 sums to 4. There are 16 sensors in the

outcomes, and so the Hamming disparity between these two outcomes is 4
16
, or 0.25.

The second disparity metric extends the idea of Hamming disparity to consider

only those sensors in which there is behavior of note. This stems from the philoso-

phy described in section 2.1.2 that inspired the SSC classifiers: for the purposes of

planning and acting, “interesting” regions of time series are those sections that have

non-zero slope and predictable trend. We call this second metric HI distance, and it

is defined as follows:

dh(ô(s, a), o(s, a)) =

∑

x∈S dwta(ôx(s, a), ox(s, a))
∑

x∈S I(ôx(s, a), ox(s, a))
(6.3)

where

I(si, sj) =















1 if (si 6= N ∧sj 6= N)

0 otherwise

(6.4)

HI disparity effectively ignores sensor matches in which nothing happens in a

particular sensor for either experience. The HI disparity of the two experiences in

the two experiences above is 1.0, since all of the sensors of interest are mismatched.

Each of the three disparity metrics has its place in our evaluation. Winner-take-all

represents the accuracy with which a model can produce an exact outcome. When
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an agent posts an outcome as a goal, it is trying to elicit that outcome, and not some

variation. Therefore, winner-take-all accuracy provides a good gauge for a maximal

rate that an agent could achieve its goals if its plans were perfect. Hamming and HI

distance represent the modeling system’s ability to get outcomes partially correct.

For the purposes of planning, it is often necessary to change some part of the sensory

state, and thus it is not always necessary to elicit an exact outcome as long as the

pertinent sensors change as anticipated. In partially observable domains, it is not

always possible even with good models to predict every sensor change with 100%

accuracy. Hamming disparity, then, provides a measure of accuracy with partial

credit, and HI disparity gives a measure that ignores uninteresting predictions. Since

planning concerns itself mainly with change, HI distance is perhaps the best overall

measure of model accuracy for models used in planning.

In our experiments, we track disparity measures as our agent collects experiences.

Disparity curves are generated via the following procedure. A training set of expe-

riences is collected as an agent takes actions according to some control policy. At

regular intervals, the agent stops collecting training data, and enters into a testing

phase. In the testing phase, the agent engages in a suite of predict-and-verify trials

in which the agent makes a prediction ô(s, a) for its current state and some action

a, executes a, and records the resulting experience o(s, a). Disparity statistics are

calculated and recorded. With GridSim, the state space for a particular grid con-

figuration can be enumerated. The state space consists of each of the traversable 36

cells on the 8× 8 grid, with the cargo bay empty or occupied, for a total of 72 states.

The agent generates and verifies a prediction for each of the 6 actions in each of the

72 states for a total of 432 trials per test suite. In domains where the state space

cannot be enumerated a priori, test suites may be generated by random sampling.
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6.1.1 Trial Descriptions

Between the our system and the environment, there are many parameters that can

affect both the steepness and lower bound of disparity curves. Our goal is to isolate

the most relevant factors, control for them in our experiments, and understand the

nature of their influence on accuracy so that we may make statements about the

accuracy of the modeling system under varied conditions. In so doing, we can get a

handle on how difficult the process of building reliable behaviors will be. Here are

the primary factors with influence over model accuracy:

• The domain:

– The number of possible outcomes

– Nondeterminism and partial observability

– The degree to which outcomes can be generalized (the ratio of unique

sensory states to possible outcomes)

• The high-level controller and any biases on exploration it provides.

• The modeling system:

– The outcome classification scheme; both in the number of outcomes it

produces and its sensitivity to noise and the possibility of over and under-

generalization

– The ability of the inductive (tree-building) component to produce predic-

tive models

In the experiments that follow, we attempt to get a handle on these effects. It is

worth describing the various trial conditions we use to do that.

We use the GridSim domain in each of the trials. This is a deterministic simulator

in the sense that for a given start state and action, there is a single process that



c©Matt Schmill 2003, preprint - do not distribute 143

generates the resulting sensor patterns. There are partially observeable situations,

however. Consider the four cameras of a GridSim agent when the agent moves in a

particular direction, perhaps north. The north-facing camera will continue to track

whatever is ahead of the agent. Similarly, objects to the south will get more distant,

but whatever objects are to the north and south tend to stay within view of the

cameras facing those directions. To the east and west, however, objects appear on

one side of the visual field and pass through to the other side. Imagine riding in an

automobile and looking out one of the side windows. Objects appear in the visual

field and pass through. There is little in the way of visual cues to tell you that a

traffic sign is about to appear in on the left-hand side of your visual field, then pass

through and disappear off to the right. Without some kind of clue as to what might

appear in the east and west facing sensors as it moves north, our GridSim agent

cannot predict the behavior of those sensors either. In general, the sensors oriented

-90 and 90 degrees from the direction of movement are difficult to predict.

In response to the partial observeability problem, we offer two flavors of the Grid-

Sim simulator: a static configuration and a dynamic configuration. In the static con-

figuration, debris always appears in the same cells. In the dynamic configuration,

debris can appear in any cell that is not already occupied. These conditions offer

an interesting contrast; in the static condition, the modeling system can learn “land-

marks” that can be used to predict the side-facing camera behavior. Consider the

GridSim configuration pictured in figure 1.3. This is the static configuration. If the

agent were to move south, the west-facing camera would lose sight of the debris cur-

rently adjacent to the agent, and then pick up the next piece that is currently to the

south and west. In the static configuration, the agent can count on the second piece

of debris being there, and it can use the first piece as a cue to predict its appearance.

Specifically, the agent can use the conditions

(scam-dist 2) ∧ (scam-shape 1) ∧ (wcam-dist 1) ∧ (wcam-shape 2)
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to predict the appearance of the second piece of debris. In the dynamic environment,

the debris to the south and west is not guaranteed to be there, and so the agent

cannot be expected to predict the appearance of a new piece of debris to the west. In

the dynamic case, the agent cannot use landmarks. It can use fixtures, such as the

objects along the east and west walls, and the walls themselves, but since the location

of debris is not fixed, it no longer can be used as a cue for predicting the peripheral

cameras’ behavior. On the other hand, operator models learned in the dynamic case

should be more general since they will not generally be based on landmarks. This

should mean that the models learned in the dynamic configuration will transfer better

to changes in scenery. We run trials with both the static and dynamic configuration

of GridSim.

When the debris location is dynamic, the number of outcomes also increases. It

allows a wider variety of interaction between the agent, its cameras, and the debris.

Similarly, if as we increase the size of the GridSim grid, we increase the number of

possible sensory states as well as the number of possible outcomes. We run trials with

the basic 8× 8 grid as well as a larger 14× 14 grid.

6.1.2 Random Walk

We begin our accuracy evaluation with the most primitive conditions. The agent

is placed in the 8×8 GridSim environment in its static configuration. 2, 000 training

experiences are generated by repeatedly selecting actions at random and executing

them. Wandering randomly in this fashion is called a random walk, and we will refer

to the set of experiences generated by random walk as RW data hereafter. Experience

outcomes are generated using the Delta-Simple filter. Each time the agent collects

100 experiences, the random walk is stopped, and accuracy test is performed, and

then the random walk is resumed.
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Figure 6.1. WTA, Hamming, and HI disparity measured at regular intervals during
a random walk of the 8× 8 GridSim simulator with the NESW agent.
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Figure 6.1 shows each of the three disparity metrics, as they change over time,

for RW data. From left-to-right, they are wta, Hamming, and HI disparity. Each

plot shows the disparity of an informed agent, using our modeling system, versus

that of an uninformed agent that simply predicts the most prevalent class. In each

case, there is a marked advantage to building models of the relationship between

start state and outcome. The wta plot shows that after 2, 000 randomly generated

experiences, our agent can predict 65% of the outcome classifications over the space

of 432 action/state pairs. Looking at sensor-by-sensor outcome classification, as we

do in the Hamming disparity metric, performance is at a level beyond the 65%,

indicating that while 35% of outcomes cannot be predicted exactly (wta score, the

behavior of certain sensors in those outcomes can be accurately predicted. After 2, 000

experiences, approximately 80% of all individual sensor classifications are correctly

predicted. Finally, HI disparity shows that after 2, 000 experiences, better than

70% of all sensors that change during the course of an experience can be accurately

predicted.

Before moving on to other experimental conditions, it is worth delving into the

RW data a bit further to make two observations. First, consider the plot of Hamming

disparity of figure 6.1. Note that the uninformed performance here appears to be

fairly good. This is because for each action, some number of sensors will exhibit no

change on a regular basis. For example, in each of the move actions, the bay sensor

cannot change. These sensors are “uninteresting” in the ssc sense because they do

not change, but they are an easy way for the uninformed modeler to get some sensors

correct and improve its Hamming score. Since the uninformed modeler will get the

sensors that change correct far less frequently, the true weaknesses of its performance

are exposed in the wta and hi disparity plots. For this reason, we will skip Hamming

plots as we progress through different experimental conditions. Instead, we will focus
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exclusively on hi disparity, since it most closely targets the measure we are interested

in: whether or not a modeler can predict those sensors that change.

Next, consider the GridSim domain and its actions. The effects of lift and drop

actions are fully observeable, while each of the move actions is potentially not. That is,

the sensory state prior to acting may not be enough to predict the resulting behavior

in all 16 sensors. It is useful, then, to analyze the prediction accuracy of the individual

actions seperately, as we have in figure 6.2. Clockwise, from upper-left, are plots of

move-w, move-e, lift, drop, move-s, and move-n. Note the marked difference in the

nature of the lift and drop actions versus the move actions. The lift and drop actions

have each only a few observeable Delta-Simple outcomes; lift has two and drop has

three. Thus, the models required to generate them are simple and can be converged

on quickly. Their effects are fully observeable and so a disparity of zero is possible.

On the other hand, there are in the range of 20-25 Delta-Simple outcomes per move

action. The outcome is highly dependent on starting state and may require extensive

use of landmarks in the visual sensors to disambiguate all the observeable effects. In

many cases, a particular outcome of a move action is only attainable from a single

grid cell in the simulation. The models required can be extensive, the modeler is

more suceptible to overfitting with a shortage of examples, and in some cases a full

outcome specification can never be fully disambiguated from the start state. In each

of the subsequent accuracy experiments, we will break down accuracy by action.

6.1.3 Entropy-based Exploration

A random walk will more or less guarantee a uniform distribution of actions taken

over a period of time. If our agent has enough time, it will eventually get representa-

tives of every outcome class, and should have the data it needs to build good models.

But the ease with which the modeling system can pin down the lift and drop actions

indicate that a random walk is not necessarily the best policy for generating examples
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Figure 6.2. HI disparity versus experience count, broken down by action, for the
8× 8 GridSim random walk data.
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Figure 6.3. HI disparity versus experience count, for an agent in the 8×8 GridSim

udnder the L0 and random walk exploration policies. At the top, composite HI

disparity using the L0 controller data versus random walk data. Below, HI disparity
for four representative actions.

to learn from. Furthermore, if the agent is in a grid cell where the model for move-e

has a 100% accuracy, then executing another move-e might be a waste of time.

To test the hypothesis that more efficient learning should be possible, we generated

2, 000 experiences using the L0 control policy first introduced in section 5.1. To recap,

L0 control is a three-tiered control policy:

1. if a reflex is active, execute the response

2. else execute the maximum-entropy action argmaxa h(ô(s, a))

3. if there is a tie for maximum entropy, select an action at random



c©Matt Schmill 2003, preprint - do not distribute 150

The addition of reflexes guarantees that important outcomes are experienced,

while the entropy-based action selection focuses exploration on the areas with higher

entropy in the distribution of predicted outcomes, driving the system towards disam-

biguation. Figure 6.3 shows time series HI disparity measures of the modeling system

using experiences generated by the L0 controller.

The graph on the left shows overall HI disparity as it changes with the number of

collected experiences, for both the informed and uninformed cases. The dashed lines

are the same measures for the RW dataset, taken from figure 6.1. The four graphs to

the right of figure 6.3 break down the HI measures by action; clockwise from upper

left they are graphs for RW data versus L0 data for the move-w, move-e, drop, and

lift.

As anticipated, the L0 controller appears to accelerate learning in every case

except lift and drop. Overall HI disparity was at 35% in under 500 experiences

with the L0 controller, a level that took the random controller 2, 000 experiences to

achieve. After 2, 000 experiences, the models generated using L0 data were missing

less than 10% of all predicted sensor outcomes. The combination of reflexes, which

bias the agent toward important outcomes, and the bias toward taking high-entropy

actions, the controller effectively focuses the agent towards opportunities to learn and

refine models.

6.1.4 Dynamic Configurations

To understand the possible advantages that learning in a statically configured

environment might give the modeling system, we conducted accuracy tests for the

dynamic case. We generated 2, 000 experiences with the L0 control policy in an

8 × 8 grid in which debris was randomly placed. Every 400 experiences during the

collection of training experiences, the debris locations would be reset to new, random

locations. In each dynamically configured grid, there were the same three pieces
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Figure 6.4. HI disparity versus experience count, for an agent in the 8×8 GridSim

trained under the L0 exploration policy in the dynamic configuration. At the top,
composite HI disparity for the dynamic set versus random walk and L0 sets previously
described. Below, HI disparity broken down by action for four representative actions.

of debris, only their locations were changed. Accuracy tests were performed in the

statically configured environment, so that the both test conditions would be evaluated

against the same environment.

Figure 6.4 shows HI disparity plots for the dynamic case versus the static case.

The leftmost plot shows composite disparity. For training on dynamically configured

domains, disparity tends to converge at around 0.4, indicating that over the domain,

the dynamic based models can predict about 60% of sensor behavior. Rate of learning

was similar to that of the static based random walk, although the random walk agent

continued to learn after the dynamic agent leveled off. The static based L0 agent

outperformed the dynamic based agent by an edge of 0.3 in disparity after 2, 000

experiences.
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Figure 6.5. Sample outcome classification trees. On the left, a tree built using
experiences in the statically configured domain. On the right, a tree trained in the
dynamic configuration.

The intuition behind comparing dynamically and statically configured environ-

ments was that a statically configured environment would provide “landmarks” for

an agent to make predictions that could otherwise not be made. We identified the

move actions in the GridSim simulator as having the qualities of partial observabil-

ity. That is, the cameras facing 90 and −90 degrees from the direction of movement

cannot be predicted with 100% accuracy because objects that could not be previously

sensed might appear into the view of those cameras. By keying off of landmarks in

the environment, though, these appearances might be predicted in the static config-

uration. In the dynamic configuration, debris cannot be used as landmarks.

Plots of HI disparity for individual actions to the right of figure 6.4 solidify the

intuition further; The plots for the move actions show a distinct seperation between

static and dynamic training. Disparity bottoms out at about 0.4 in the dynamic

case, and under 0.1 in the static case. To illustrate the difference more clearly,

figure 6.5 shows representative portions of initial condition trees built on 105 move-n

experiences 2. To the left is an excerpt from the static tree, to the right is an excerpt

from the dynamic tree. Note that the static tree, even with only 105 experiences to

work with, has elaborated the initial condition space more fully than in the dynamic

case. The static tree has brought into consideration the shape of any object sensed

2The entire trees are not shown for the sake of brevity. The fully elaborated static tree has 11
leaves and 5 decision nodes. The fully elaborated dynamic tree has 4 leaves and 2 decision nodes.
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Figure 6.6. The three outcomes shown in the tree generated from the dynamic
configuration of figure 6.5.

by the east facing camera to disambiguate outcomes. It has brought into play a

landmark of the static configuration. The tree built in the dynamic configuration

cannot resort to such tactics, and so the tree is less developed.

Figure 6.6 shows the actual Delta-Simple descriptions of the outcome classes

represented in the leaf shown in the tree built on data the dynamically configured

domain. The sensors that cannot be resolved are the east and west facing cameras;

those 90 and −90 degrees from the direction of movement. Results are similar for all

four move actions. In each, there are unresolvable ambiguities in the camera sensors

facing 90 and −90 degrees to the direction of movement. There are 3 sensors in

each direction, accounting for 37.5% of the available sensors. This accords with the

apparent 0.4 lower bound on HI disparity in the dynamic case.

6.1.5 SSC Variants

As noted in section 2.1.2, sensitivity to noise or overfitting in the classification

system can manifest as outcome class definitions that are too general or too specific. If

overly general class definitions prevail, experiences generated by two or more different

processes (and thus having different initial conditions) will take the same label. If
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Figure 6.7. A single move-w experience in the GridSim simulation, represented by
each of the three ssc outcome classifiers, Delta-Simple, Delta, and ssc1.

overly specific class definitions prevail, experiences generated by the same process will

have different class labels. In either case, the result is loss of accuracy.

The accuracy test gives us our first opportunity to compare and test the ssc

outcome classifiers. The intuition behind these classifiers is to reduce the opportunity

for overfitting and sensitivity to variations in sample size, outside parameters, or noise.

To this point, all of our tests are with the Delta-Simple filter, and the achievable

accuracy levels indicate that this filter produces outcome classifications that are fairly

close to the true generating processes behind the GridSim simulator. Here, we revisit

the Delta and ssc1 filters and consider the accuracy levels that are possible with

their outcome classifications.

Recall the three ssc schemes described in section 2.1.2. Delta-Simple assigns a

symbol to each sensor of an experience based on whether its value goes up or down over

the course of an experience. Delta elaborates on the simple scheme by including

a magnitude rating indicating how much each sensor changes. ssc1 uses an even

further enhanced representation based on piecewise linear fitting that allows the filter

to express arbitrary sensory shapes, made up of segments that increase, decrease, level

off, or include discontinuities. Figure 6.7 shows each of the three outcome classifiers’

interpretations of a single GridSim experience.
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The experience in figure 6.7 is a move-w experience in which the agent moves away

from a piece of debris. This is reflected in the behavior of the ccs (current cell sensor),

and typifies the differences between the three classifiers. The Delta-Simple filter

simply notes that as the agent moves off of the debris, its ccs loses track of the debris,

and the shape and color sensors decrease to their baseline values3. The Delta filter

is more expressive, classifying the ccs changes as 4D and 3D indicating a decrease of 4

units and 3 units, respectively. Delta outcome labels allow more subtle distinctions

between colors and shapes to be made. Finally, the ssc1 classifier introduces the idea

of a discontinuity – a sharp increase or decrease in value – in the ccs-color sensor.

Additional expressiveness will allow an agent to make more detailed distinctions

during planning. The additional expressiveness of the Delta formulation would allow

the planner to distinguish moving onto red debris from black debris. If there were

some utility in transporting the black stuff and not the red stuff, then the Delta

scheme provides a relative utility over Delta-Simple. However, if moving to a more

expressive representation impacts the model building scheme negatively, then the

tradeoff may not be worth it. Therefore, we are interested in the accuracies of these

three schemes.

Figure 6.8 shows a comparison of the three schemes. On the left, the number of

unique outcomes produced by the individual classifiers. Both Delta and Delta-

Simple top out in the neighborhood of 100 unique class labels for the 8 × 8 grid.

ssc1, however, exceeds 200 by 2, 000 experiences, and is possibly not done. Not only

does the increased expressiveness allow the ssc1 filter to make more distinctions,

but the piecewise linear fit algorithm introduces a source of variance. This can be

verified empirically, as the ssc1 algorithm may parse multiple experiences generated

from a single action taken from a fixed start state in different ways. This effectively

3Recall that shape and color are encoded as integer scalars in the GridSim domain, with 0
indicating the absence of anything visible to report.
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Figure 6.8. A comparison of the three outcome classification filters: delta-simple,
delta, and ssc1. Above, the number of unique outcomes produced by each filter
run versus experience count. Below, informed and uninformed HI disparity scores for
each filter over the same 2, 000 experience run.
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introduces ambiguity into the modeling system, which is evident in the plot to the

right of figure 6.8. This graph plots HI disparity for the three outcome classifiers

versus the number of experiences in the statically configured environment. For the

first 700 experiences, the performance of ssc1 stays within a reasonable margin of

the two delta schemes. But, as the number of experiences increases, so increase the

number of opportunities for the piecewise linear fitting algorithm to interpret two

similar experiences two different ways. By 1, 000 experiences, the disparity plot for

ssc1 starts to diverge, actually taking a significant turn for the worse before stabilizing

at about 0.4.

These graphs show that there is a cost to increased discrinability. The most expres-

sive classifier, ssc1, performs the worst in accuracy tests. In the GridSim domain,

it is not clear that the increase in expressiveness would give an agent an advantage

during planning, since GridSim outcomes are relatively simple. The additional ex-

pressiveness is unnecessary and a detriment in this case and for the purposes of our

experiments with the GridSim simulator, we will use the Delta-Simple classifier.

However, in more sophisticated domains, we still suspect that there may be cases

in which qualitatively distinct outcomes would be classified together by the Delta

and Delta-Simple schemes. Where this is the case, accuracy and planning may be

limited by the modeling system’s tendency to group these outcomes together. Mov-

ing between levels of expressiveness during development is a distinct possibility for

future work, should it ever become evident that a lack of expressiveness is limiting

performance.

6.1.6 A Larger Space

With the eventual goal of implementing our develpmental system on increasingly

sophisticated platforms, scalability is a concern, particularly of the modeling system.

Some of the properties of decision tree induction have been studied and the effects
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of input parameters such as dataset size and class complexity are known [51, 58]. In

this section we consider the scalability of our modeling component.

We implemented a larger, 14×14 grid similar to the 8×8 grid described throughout

our experiments. Where there are 36 grid cells that an agent can manuever into in

the smaller grid, there are 144 in the larger one. Where there are 3 pieces of debris

in the smaller, statically-configured grid, there are 6 in the larger grid. The action

space, and locations of the dropoff cells are similar for the two domains.

Figure 6.9 shows HI disparity measures for an agent operating under the L0

control policy in the larger grid. At right of the figure are the raw disparity against the

number of experiences as the agent collected 8, 000 experiences. The curve appears

similar in shape to that of the smaller grid. By 2, 000 experiences, the agent has

reduced average disparity to under 0.2, indicating that over 80% of the agent’s sensor

behavior can be accurately predicted across the grid. By 8, 000 experiences, accuracy

reaches the neighborhood of 95%. To the right of figure 6.9, HI disparity plots for

the 8 × 8 grid and the 14 × 14 grid are overlaid, with the number of experiences for

the larger grid normalized by the 300% increase in grid size. The plots are virtually

indistinguishable, with the larger grid showing an apparent advantage due to a greater

opportunity to generalize in the larger domain.
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Figure 6.9. HI disparities for an agent operating in a larger 14× 14 grid. Above are
HI scores for an agent operating under the L0 control policy, as they change over the
first 8, 000 experiences of exploration. Below, the same plot overlaid onto the plot of
figure 6.3 for the 8 × 8 grid, with the X axis for the 14 × 14 data scaled by .25 to
account for the increase in the number of states.
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6.2 Facilitation

The accuracy statistic tells us how well our system can predict an outcome given

an action and a starting state. Conversely, we can predict the probability that some

action will produce a goal outcome given an agent is in a particular state. If our agent

is in a state that maximizes the probability of its goal outcome, then the accuracy

metric tells it everything it needs to know about its expectations of achieving its goal.

This is not always the case; often an agent needs to string together a sequence of two

or more actions to get it into a state in which its goal is a high probability result.

This is the basis of our system: that an agent can identify regions of the state space

where a goal is a highly probable outcome, produce a sequence of actions that will get

it there, and package them up into an activity that can be used and reused any time

the goal comes up. In this section, we will consider those situations in which plans

are necessary, and the planner that produces them. Specifically, we will ask how well

the planner is able to facilitate goal outcomes by putting an agent into a state where

they are likely to unfold.

In our discussion of facilitation, we will use the p and o notation from the previous

section on accuracy. Recall that

• o(s, a) refers to an actual outcome of taking action a in state s

• p(o|s, a) refers to the true probability that outcome o will result when action a

is taken in state s

• p̂m(o|s, a) refers to the estimate of p(o|s, a) made by some model m

• ôm(s, a) refers to an outcome predicted by model m (argmaxo p̂m(o|s, a))

Three additional concepts that were introduced in the facilitation portion of sec-

tion 1.4 will be used in this discussion.
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• ℘(ss, sg) is called a prefix. A prefix is a sequence of actions, produced by the

planner, that are intended to move an agent from state ss to state sg.

• Prefixes are generally followed by goal steps. The goal step is an action ag chosen

as the action that maximizes the chance of a goal outcome og: argmaxa p(og|sg, a).

A prefix followed by a goal step is a plan.

• o(ss, ℘(ss, og), ag) refers to the outcome resulting from taking ag, the goal step,

after having executed the prefix ℘ as described in chapter 4.

We can again use the various disparity statistics introduced in section 6.1 to com-

pare the outcome of a plan’s goal step to a target outcome. Plan disparity is referred

to by d(og, o(ss, ℘(ss, og), ag)). Disparity can be used as the basis for different mea-

sures of facilitation. We can define absolute facilitation as the complement of the

disparity between a target outcome and the outcome of a plan.

1− d(og, o(ss, ℘(ss, og), ag)) (6.5)

Or, we can define relative facilitation as the ratio of outcome disparity with a plan

prefix to outcome disparity without the prefix. Specifically, relative facilitation is the

measure we introduced in section 1.4:

1−
d(og, o(ss, ℘(ss, og), ag))

d(og, o(ss, ag))
(6.6)

The relative facilitation score for a plan will be 1 when the disparity between the

goal outcome and the plan outcome is zero, regardless of the value of the denomi-

nator; we will define facilitation to be 1 even when d(og, o(ss, ag)) is zero. Relative

facilitation will be zero when the disparity after executing a prefix is the same as sim-

ply executing the goal step from the start state. Note, though, that this formulation

of relative facilitation can also enter the negative range, even approaching −∞. This

happens in cases where executing a plan results in an increase in disparity over that
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of simply executing the goal step from the start state. Since this may cause problems

in aggregate measures of facilitation, we will use absolute facilitation and disparity

scores in the section to evaluate the planner. Recall these definitions of aggregate

facilitation metrics from section 1.4:

Coverage is the percentage of the state space for which a planning actor can facil-

itate a particular income og.

Capability is the percentage of possible goal outcomes that can be facilitated from

a fixed point or region of the state space.

We will use the statically-configured GridSim domain, as described in the discus-

sion of accuracy, to evaluate facilitation. This domain will allow us to enumerate the

full state space and get complete coverage statistics by generating plans from each

starting point in the state space. In this evaluation we are most interested in cover-

age. Coverage gives us a concentrated look at a single activity, and how facilitation

for that activity changes during development.

In our facilitation experiments, we track absolute facilitation for one or more goal

outcomes as our agent learns from experiences in its environment. Experiences are

collected as an agent acts under to some control policy. At regular intervals, the

agent stops collecting training experiences, and enters into a testing phase. In the

testing phase, the agent engages in a series of generate-and-test trials to determine the

coverage for some outcome og after having collected n experiences to build models

and plans with. The coverage test is performed by enumerating the states in the

simulator and iterating through them, with the agent attempting to plan from each

of the possible start states to achieve og. At each state, a plan is generated, and

executed. The result code from the execution module is recorded, along with the

disparity between the actual outcome and the goal outcome.
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We can visualize coverage as it changes throughout development in two basic

ways. First, we can compute average facilitation scores over the entire starting state

space each time a testing phase is performed, and view it as a time series. These

learning curves allow us to observe the gross dynamics of coverage over time to tell

whether or not coverage is improving, by roughly how much, and over what time

intervals significant change occurs. This gives us a sense of whether or not the basic

facilitation claim is being satisfied (the agent is improving). We cannot, however, see

fine details of what is going on in each of the individual starting states using only

learning curves. When it is necessary to look at successes and failures encountered in

individual starting states, we will use coverage plots.

The coverage plot is a visualization technique suited for simple 2D domains such

as the GridSim simulator. A coverage plot is essentially a map of the domain with

success and failure information superimposed onto it. A sample coverage plot is shown

in figure 6.10, using the GridSim configuration introduced in section 1.1.1. Note that

the grid contents, including the walls, debris, and dropoff locations, are the same as

those in figure 1.3, except that the agent has been removed and some of the cells are

shaded gray. The shading of the internal cells represents coverage information for the

following outcome, after 300 training experiences:

N-N-D-D-U-N-N-U-N-N-N-N-N-D-N-N

This outcome corresponds to a move-w experience in which the distance to the

nearest visible object in the west decreases, the distance to the east increases, a nearby

object to the north leaves the visual field, and nothing changes to the south.

We will refer to cells on a coverage plot by their distance from the top, left cell on

the map, which is (0, 0). Note that (0, 0) contains a wall, cell (1, 2) contains a dropoff

point, cell (4, 3) contains debris, and so on. Cells along the border of the grid are

walls, and are colored black in the coverage plot to indicate that a facilitation test
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Figure 6.10. A sample coverage plot for the 8× 8 GridSim domain.

is not possible from that cell. Cells inside the rectangle formed by the points (1, 1)

and (6, 6) are traversable by the agent, and facilitation tests can be made starting

at any of these cells. The level of shading for any cell in the coverage plot indicates

what the agent is able to do with the goal outcome when starting in that particular

cell. Those locations that are shaded medium-gray are cells from which the agent

either cannot build a plan, or builds a plan that breaks. The lighter gray shaded cells

are cells from which the agent can build a plan, execute it as intended, but fails to

achieve the goal outcome. Unshaded cells correspond to starting states on the map

from which the agent is able to build and execute a plan that successfully achieves

the goal. Additionally, each cell is broken up into two triangular areas to differentiate

starting states in which the cargo bay is empty from those in which the bay is full.

The upper-left triangle of each cell corresponds to the start state where the bay is

full, while the lower-right triangle corresponds to the start state in which the bay

is empty. Note that cell (2, 5) is shaded medium-gray on top and light-gray on the

bottom, indicating that when the agent starts there with its bay full, it cannot build

or execute a plan, but if the bay is empty, it builds a plan it thinks will work but

does not.

This particular coverage plot illustrates the general utility of such a visualization.

Notice that there are two cells from which the agent can successfully achieve the goal
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outcome regardless of the cargo bay’s status. They are (5, 6) and (6, 6). Note also

that the agent can generally only build plans when it starts on the bottom row of

the grid. It happens that this particular outcome is only possible when the agent

moves west out of cell (6, 6). The coverage plot shows that the agent has a hard time

achieving the goal when it is far from the grid cell in which the outcome is easiest to

achieve. It is an intuitive result made obvious by the coverage plot.

We now turn to individual coverage experiments. Our goal here is to verify the

facilitation claims with learning curves and coverage plots, and in the process deter-

mine the factors that contribute to or limit the performance of our system. We will

present a series of experiments and detail what they suggest about the performance

of our system, highlighting what we consider to be the primary factors that influence

facilitation.

6.2.1 Random Walk

To serve as a baseline, we ran coverage tests with random walk data. In this

baseline experiment the agent operates under a random walk policy for 300 training

steps, learning is suspended while a complete coverage test is run for a random sample

of four unique outcomes, and the process is repeated. The same four outcomes are

tested after each batch of 300 training steps. The four outcomes in the experiment

we describe are:

N-N-D-D-U-N-N-N-N-N-N-N-D-U-N-N

N-N-U-U-D-N-N-U-N-N-N-N-N-D-N-N

N-N-U-U-D-N-N-D-N-N-N-N-N-U-N-N

N-N-N-N-D-N-N-N-N-N-U-N-D-U-N-N

From top to bottom, these labels represent: a move north along the east wall in

which the agent moves from one dropoff cell to another one, a move west in which a

nearby object comes into view to the north, another move north in which an object
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disappears from view in the west facing camera, and a move east in which the agent

moves into the southeast corner of the grid.
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Figure 6.11. Coverage statistics for the outcome N-N-D-D-U-N-N-N-N-N-N-N-D-U-N-N

under the control of a random walk in the static domain.

Coverage curves for each of the four target outcomes are presented in figures 6.11

through 6.14. Each figure contains two graphs. The graph to the left of each figure

shows the results of coverage tests taken every 300 experiences. In each of these

graphs, two coverage measures are shown: prefix success and outcome success. Recall

that in a coverage test, an agent is asked to achieve a target outcome from each of

the enumerable starting states in the environment. Starting in cell (x, y), an agent

will first build a plan, and then execute it. If a plan can be successfully generated

and executed to completion from cell (x, y), that is scored as a prefix success. If, in

addition, the target outcome is achieved by the plan, then it is scored an outcome

success. Each point in the left-hand graphs of figures 6.11 through 6.14 represent

a percentage of the state space from which a prefix or outcome successes have been

generated. A prefix success coverage value of 0.5 indicates that a plan was successfully
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Figure 6.12. Coverage statistics for the outcome N-N-U-U-D-N-N-U-N-N-N-N-N-D-N-N

under the control of a random walk in the static domain.

generated and executed to completion from 50% of the possible starting states at some

point during development, for example.

The ideal is always to achieve both a prefix success and an outcome success. This

indicates that a plan was generated, it could be executed, and it facilitated the goal

outcome. Note, however, that it is possible to generate a prefix success that does not

produce an outcome success. This is often the case for plans that are too general;

a legal plan is generated and executed but does not achieve the goal. It is also

possible to fail in the prefix phase and then produce an outcome success. This is

because the goal step of each plan is executed whether or not the plan is perceived

by the system to have succeeded. A prefix failure followed by an outcome success is

rare in the GridSim domain, and generally indicates a broken plan that manages to

coincidentally achieve the goal.

The plot to the right of figures 6.11 through 6.14 shows the number of exemplars

for the given goal outcome versus the total number of experiences the agent has

collected. Recall that an exemplar is an experience that matches the target outcome.
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Figure 6.13. Coverage statistics for the outcome N-N-N-N-D-N-N-N-N-N-U-N-D-U-N-N

under the control of a random walk in the static domain.

Exemplar counts are included because our planning system is case-based; it stands to

reason that the number of viable exemplars to work with has an effect on coverage.

This baseline study illuminates several worthwhile results. Note that in each

graph, prefix success coverage starts much higher than outcome success coverage. In

many cases, prefix success spikes to near 1.0, indicating that the planner always thinks

that it is generating and executing good plans. In contrast, outcome success starts

low. These two curves then slowly converge upon each other. This phenomenon is

almost universal in all coverage tests, and is a result of early instability and inaccuracy

in the modeling system. In early development, the modeling system has weak and

overly-general models. These models produce initial conditions that are easy (and

sometimes trivial) to satisfy but rarely reflect the true conditions necessary for success.

As models get better, the planner simultaneously improves at correctly identifying

plans that will and will not work. When the planner, with the help of the modeling

system, can identify with perfect accuracy whether a plan will or will not work,

prefix success and outcome success converge. In three of the four graphs, prefix and
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Figure 6.14. Coverage statistics for the outcome N-N-N-N-N-N-N-U-N-U-D-N-N-D-N-N

under the control of a random walk in the static domain.

outcome success actually do converge. In the fourth, convergence seems likely with

additional training experiences Comparison of these plots to the accuracy plots of

section 6.1 shows that convergence occurs approximately when model accuracy starts

to stabilize. This does not preclude later divergence, however. In figure 6.12, prefix

and outcome success do diverge, as a result of a sudden surge in exemplars shown

on the corresponding graph of exemplar counts. This is another common feature of

coverage; sudden increases in exemplar counts induce instability in the models that

are felt throughout the system in the form of temporary periods in which faulty plans

may be generated.

Coverage plots in figure 6.15 reflect this “destabilizing” effect schematically. In

the leftmost coverage plot, the agent has 300 experiences. The planner produces

plans that cover the entire states space, though in only two cells can it actually

produce a working plan. In the center plot, after 1800 experiences, the agent’s prefix

and success curves have converged. Though the range of cells from which the agent

can achieve the goal is limited, it never fails to achieve its goal when it produces a
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Figure 6.15. Coverage plots for the outcome N-N-U-U-D-N-N-U-N-N-N-N-N-D-N-N as
underlying models change after 300, 1800, and 2400 experiences.

plan. Finally, in the rightmost plot, the introduction of a slew of new exemplars at

2400 experiences has destabilized the models. As a result, the agent begins starts

producing nonworking plans for cells from which it was previously unable to produce

a plan for at all.

The coverage plots in figure 6.15 also illustrate an emerging trend in facilitation

for the GridSim domain: that some outcomes can only be experienced by taking

a single action in one or just a few states. When an outcome is achievable only by

taking a certain action when in a single state or small number of states, we call these

special states the outcome’s home states. Coverage initially includes only the home

states, indicating that the modeling system can identify the correct conditions for

achieving the goal with only a single action, but the system cannot yet build good

plans. In this initial batch of coverage tests, coverage seems to “grow” outward from

the home states until coverage tends to reach a maximum radius. In figure 6.15,

the radius seems to be somewhere around 3 cells. The planner, in this case, seems

to have an effective range of 3-4 steps from the home state. We call this range in

which a planner is capable of producing a working plan the planner’s effective radius.

Depending on where on the grid the home state is, this effective radius may limit the

maximum coverage scores we will see for a particular goal.
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The data from this baseline study, coupled with observations made from the cov-

erage plots, allow us to form some hypotheses about the primary factors involved in

determining facilitation, coverage, and the rates at which they change. Here are the

primary hypotheses that these data suggest:

• There is an initial “ramp up” period in which the modeling component is pri-

marily responsible for changes in facilitation and coverage. During this period

models are unstable but improving. Poor initial models cause a wide disparity

between prefix success and outcome success, indicating that faulty plans are

being generated. As the modeling process is bootstrapped, prefix and outcome

success levels converge. Convergence occurs when the models involved in a

particular outcome stabilize.

• Exemplar count seems to influence coverage in two ways. First, accurate initial

condition models can only be built when an adequate number of positive in-

stances of an outcome are available. Second, we are using a case-based planner

that must find inroads to old traces leading to the goal. When more exemplars

are being generated, in general, there will be more traces through the state

space for our planner to catch an inroad to.

• The number of home states, or states from which a goal is trivially achievable,

plays a primary role in how coverage for that goal will develop. This is especially

true when home states are remote or improbable in a domain.

• The planner horizon – the maximum number of steps in a trace our case-based

planner will consider in the search for a plan – appears to limit coverage. Con-

sider that the effective planning radius for a typical goal is roughly 3, using

traces generated by a random walk and a planning horizon of 7. Since a ran-

dom walk will rarely produce traces that go directly to a goal, we can expect

superfluous steps in any trace that reduce the effective radius of the planner.



c©Matt Schmill 2003, preprint - do not distribute 172

• The control policy used to generate training experiences should have some effect

on facilitation. A structured control policy might improve coverage in a number

of ways. For example, the l0 control policy has the effect of accelerating the

stabilization of the modeling system, and as such, this control policy could

have the effect of increasing the rate at which prefix and outcome success levels

converge.

We will use these hypotheses to prescribe the next round of experiments. We

will start by selecting a fixed set of five outcomes to test each time we change the

experimental setup to test these hypotheses. We will refer to these outcomes as

o1, o2, o3, o4, and o5. To control for exemplar size and outcome frequency, we chose

these outcomes by sorting the set of all outcomes by their frequency in a 2, 500 step

random walk, and selecting outcomes from this at fixed intervals: the 17th, 33rd,

50th, 67th, and 83rd percentiles. The outcomes, followed by their frequency in the

2, 500 step random walk, are listed below:

o1: N-N-N-N-N-N-N-D-D-D-U-N-N-U-N-N (31)

o2: N-N-D-D-U-N-N-U-N-N-N-N-N-D-N-N (10)

o3: D-D-N-N-N-N-N-N-N-N-N-N-N-N-N-N (9)

o4: N-N-N-N-N-D-N-D-N-N-N-N-N-N-N-N (6)

o5: N-N-N-N-U-N-N-N-D-D-U-N-D-U-U-U (4)

It is worth noting that the frequency range of these outcomes is relatively small,

between 31 and 4. This is primarily due to the fact that the large majority of outcomes

in a random walk fit the following profile:

N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N

This is the outcome in which no sensor values change, and it corresponds to a

wide variety of home states and actions: moving into a wall produces it, as does
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executing a drop action with nothing in the cargo bay. It occurs 1, 024 times in

the 2, 500 step random walk. There are 99 additional outcome classes that occur

between 4 and 36 times in the random walk. The above outcomes, from top to

bottom, represent the following outcomes: an outcome where the agent moves east

and something disappears from view to the south (o1), an outcome where the agent

moves west out of the southeast corner of the grid (o2), an outcome where the agent

drops an object that is not picked up by the current cell sensor (o3)
4, an outcome

where the agent moves north in the field of recharge cells along the west wall (o4),

and an outcome where the agent moves south over a piece of debris that appears in

the current cell sensor (o5).

Using the same set of outcomes over each our experiments will allow us to better

compare the results for facilitation experiments run under different conditions. By

selecting outcomes o1 . . . o5 as we have (by their frequencies in a random walk) we

are attempting to observe the apparent effects of exemplar frequency on facilitation

throughout the experimental process.

We will now present the results of four additional experiments. First, we will

briefly reexamine the random walk for the new set of outcomes introduced above to

reproduce a baseline example. Next, we will look at a planning based control policy

in which the agent pursues only the outcomes o1 . . . o5 during the training periods to

determine if a policy biased towards reproducing the outcomes being evaluated will

improve performance beyond what we saw as the effective range of our planner in

the random walk. In a third set of experiences, we extend the planning horizon to

9 steps, and also introduce a profile relaxation modification to the planning process.

The relaxation procedure attempts to seek out greater levels of generalization during

the planning process so that a single exemplar can facilitate a goal from a broader

4An object that is dropped may not appear in the ccs if it is dropped into a cell where there is a
dropoff receptacle or there is an existing object that obscures the newly introduced object.



c©Matt Schmill 2003, preprint - do not distribute 174

portion of the state space than previously possible. Finally, we introduce a cheat walk

control policy to determine if the greatest factor contributing to coverage is a wide

variety of good exemplars.

6.2.2 Random Walk Revisited

Baseline coverage and exemplar curves for the five new outcomes o1 . . . o5, taken

during a random walk, are shown in figures 6.16 through 6.20. These results fit

the general pattern established in the first random walk experiment. That is, prefix

success starts at an inflated value as the planner produces plans that are easy to

execute, but outcome success is low, as those plans rarely succeed. Over the first

1000 experiences, model improvement allows prefix and outcome success to more or

less converge. Beyond 1000 experiences, these success rates may increase (at a slower

rate) or level off, generally reaching values in the range of 20 − 40%. Note that the

two most infrequent outcomes, o4 and o5, are harder to come by in a random walk;

for this reason, the exemplar curve in figures 6.19 and 6.20 level off, capping outcome

success coverage for these two curves at about 20%. These two outcomes have only

two home states each, a single cell on the grid with the bay either empty or full,

making them fairly rare in any given random walk. Rarity, in the cases of o4 and o5,

appears to have an adverse effect on coverage.

The worst coverage, however, was experienced with outcome o2. Coverage for

this outcome never exceeds 10% and the combination of the modeling system and

planner is never able to drive prefix success into convergence with outcome success.

Interestingly, this outcome does not seem to be as rare in a random walk as o4 and

o5 are. Like o4 and o5, o2 has only two home states, but infrequency does not appear

to be the primary factor behind its lack of coverage. This outcome corresponds to

moving west out of the southeast corner. This outcome, while showing up a few more
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times over the first 2500 training experiences, has one of the most remote home states

on the grid, and this seems to produce poor results in coverage tests.
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Figure 6.16. Coverage statistics for o1 (N-N-N-N-N-N-N-D-D-D-U-N-N-U-N-N) on random
walk data.

Figures 6.21 through 6.22 show coverage plots for o1 . . . o5 after 2500 training

experiences generated via random walk5. Recall that unshaded cells are facilitated,

lightly shaded grid cells correspond to prefix successes but not outcome successes, and

heavy shading represents the case where no plan could be generated. Coverage tends

to “radiate” out from the home states of outcomes in these figures. Note that in o2,

there is only a single covered cell, its home state in the southeast corner of the grid. In

the coverage plot for o3, the upper half of many cells are facilitated but the lower half

is not, indicating that this outcome is facilitated more readily when the agent starts

with cargo in its bay. Recall that o3 corresponds to a drop experience in which the

cargo bay is emptied. Most such drop outcomes are more readily facilitated starting

with the bay full since the lift experience that loads the cargo bay may precede the

5Each of the five outcomes are tested using the same 2500 random walk experiences.
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Figure 6.17. Coverage statistics for o2 (N-N-D-D-U-N-N-U-N-N-N-N-N-D-N-N) on random
walk data.

actual exemplar used in planning by many steps. This critical lift operation will

often be outside the planning horizon, causing the planner to fail to reconstruct a

plan when starting with an empty bay. For many of the drop outcomes that rely on

the bay being full, lifting debris is a bottleneck outcome, as described in section 5.4.

Thus, not only is it critical to identify bottlenecks for the purposes of modeling, but

also to identify them for their possibly pivotal (and distal) roles in plans.

6.2.3 A Greedy Training Policy

Random walk data serves as a baseline for how we can expect learning curves, and

coverage plots, to develop over time with the modeling system and planner working

on experiences generated with an unbiased control policy. The learning curves suggest

that at least three of the candidate factors contributing to the development of plans

that we identified are actually in play under a basic random walk: bootstrapping of

the models, exemplar count, and the number and location of home state(s).
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Figure 6.18. Coverage statistics for o3 (D-D-N-N-N-N-N-N-N-N-N-N-N-N-N-N) on random
walk data.

We are interested both in confirming the influence of the other primary factors on

facilitation (control policy, planning parameters, and more detailed aspects of exem-

plar count) and identifying ways of improving performance. While facilitation rates

of 40% are certainly not disappointing, there is reason to believe that much higher

rates are possible. Evidence in the accuracy evaluation suggested that a structured

control policy can improve performance. In this section, we will look at one such

control policy and its effect on the development of plans in our system.

We have designed a control policy, called the lpq controller, that works in two

phases. The controller starts by operating the L0 controller, as described in sec-

tion 5.1 over the first 1, 000 experiences of training. The L0 phase is introduced

to bootstrap stable, accurate models more quickly than the random walk controller.

Once stability is achieved, control is gradually handed over to a second system called

the LP controller. The LP controller will choose from o1 . . . o5 at random, build a

plan to achieve it, and execute it. Essentially, this controller greedily pursues training

examples pertinent to the outcomes we are interested in. The idea here is that we can
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Figure 6.19. Coverage statistics for o4 (N-N-N-N-N-D-N-D-N-N-N-N-N-N-N-N) on random
walk data.
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Figure 6.20. Coverage statistics for o5 (N-N-N-N-U-N-N-N-D-D-U-N-D-U-U-U) on random
walk data.
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Figure 6.21. Coverage plots for o1, o2, and o3 after 2500 experiences of random walk
training.

Figure 6.22. Coverage plots for o4 and o5 after 2500 experiences of random walk
training.
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Figure 6.23. Coverage statistics for o1 (N-N-N-N-N-N-N-D-D-D-U-N-N-U-N-N) using
training data collected with the lpq controller.

focus training experiences toward behavior we are looking to improve, and away from

peripheral outcomes and behavior that may be superfluous to the tasks the system is

being evaluated on.

Coverage curves are shown in figures 6.23 through 6.27. Each of these figures

contains two graphs. On the left is an overlay of prefix success for the lpq and

random walk (baseline) controllers, and on the right, outcome success for the lpq

and random walk controllers.

The results shown in these figures can be summarized as follows.

• The L0 controller produces faster convergence between prefix success and out-

come success in all five outcomes tested. The L0 controller also produces an

accelerated learning curve for outcome success over the first 1, 000 experiences

of training.
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Figure 6.24. Coverage statistics for o2 (N-N-D-D-U-N-N-U-N-N-N-N-N-D-N-N) using
training data collected with the lpq controller.
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Figure 6.25. Coverage statistics for o3 (D-D-N-N-N-N-N-N-N-N-N-N-N-N-N-N) using
training data collected with the lpq controller.
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Figure 6.26. Coverage statistics for o4 (N-N-N-N-N-D-N-D-N-N-N-N-N-N-N-N) using
training data collected with the lpq controller.
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Figure 6.27. Coverage statistics for o5 (N-N-N-N-U-N-N-N-D-D-U-N-D-U-U-U) using
training data collected with the lpq controller.
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• The LP controller appears to provide a slight advantage in overall outcome

coverage in the two lowest-frequency outcomes (o4 and o5). These two outcomes’

performance improved by a factor of roughly 50% over random walk control.

• Training with the LP controller does not provide a distinct advantage in the

coverage of o2 or o3.

• Training with the LP controller appears to hurt coverage for o1.

These results for the lp controller are not altogether intuitive, but can be ex-

plained. For outcomes that are frequent, a random walk can easily produce exem-

plars, arriving at them from a variety of trajectories through the state space, with

good regularity 6. In this case, since exemplars are plentiful in the random walk, the

idea that they be arrived at from a variety of different trajectories affords the plan-

ner many varied experience traces to work with. The random distribution of traces

allows the planner to facilitate more starting states. By contrast, when using the

lp controller, goal states are revisited under control of the planner, and so they are

generally revisited by repeating one or a small number of fixed trajectories through

the grid. The effect of the lp controller is to stifle continued exploration that might

occur under random walk or L0 control.

For low frequency outcomes, a random walk will provide few exemplars. Depend-

ing on the home state, these exemplars may only be approachable along one or two

trajectories. In these cases, an lp controller can both increase the number of ex-

emplars and simultaneously move the agent into the vicinity of the low-frequency

outcome’s home state, improving its chances of being revisited in the course of unre-

lated behavior. For these low-frequency outcomes, the lp controller has the effect of

stimulating exploration.

6By trajectory, we mean a sequence or path through the grid. The south east corner of the grid
may be approached on a trajectory from the north or west, for example.
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Outcomes exist on a spectrum between high frequency, accessible home states, and

low-frequency, remote home states. In one corner, high-frequency, accessible outcomes

like o1, are stunted by the lpq controller. In the opposite corner, infrequent, remote

outcomes like o2 are relatively unaffected because neither the random walk nor the

lpq walk can generate very useful exemplars. However, for the range of medium to

low-frequency outcomes, the lpq controller can provide additional exemplars useful

in planning, providing a range of improvement shown in figures 6.25 through 6.27.

6.2.4 Opening Up the Planner

The planner itself plays a great role in determining in the performance of our

system. While we are committed to the case-based nature of the planner (for reasons

described in section 3.2), the planner does have some heuristics and parameters that

might be changed to produce improvements in coverage.

The most noteworthy planning parameter we have identified is the planning hori-

zon: the length of experience traces that the case-based planner will consider when

searching for plans. Extending the planning horizon should allow the planner to pro-

duce plans in some instances where with a shorter horizon it would be impossible.

Two immediate examples are cases in which many superfluous steps clutter a work-

able experience trace and when the starting state is distant from the goal’s home

state, and a longer plan is necessary as a result.

We will also consider a variation on the PFT planner. Recall that the PFT

algorithm attempts to build a triangle table that explains how a series of experiences

moved the agent from one state to the goal outcome. The basis of building these

triangle tables is the production of initial conditions for steps in the experience trace

and making connections to prior experiences that satisfy these initial conditions.

Initial conditions are generated with the decision tree induction scheme described in

section 2.2, using the ssc profiles for the actual outcomes in the experiential trace.
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In the course of running many coverage experiments, we noticed that both out-

come and prefix success were capped at around 40%. We wondered whether the

planning process, and in particular the initial condition induction phase, was proving

restrictive and not producing plans where generalizations were possible. If the initial

condition induction step could be made more general, then plans might become more

general, creating better coverage. We will now introduce a variant of PFT we call the

relaxation planner. This variant attempts to produce more general plans through a

relaxed initial condition induction phase. Instead of using the full ssc profiles of ex-

periences in a trace, we generalize these profiles as suggested in section 2.2.3. Profiles

are generalized by wildcarding any sensor that does not appear later in the triangle

table.

The relaxed planning process is best understood by example. Suppose we have

a goal outcome og, and we are building a triangle table for a trace that ends in an

experience, eg. The first step is to produce initial conditions for experiences of type

og. We will call this set of conditions Iog
. The next step is to compare the current

state against Iog
to determine if the plan can start as is. Let us assume that Iog

is not

satisfied in the current state, and that more planning is required. The next step is to

pull the experience prior to eg (which we will call eg−1) off the experience trace and to

insert it into the triangle table. The PFT planner would start by producing the ssc

profile for eg−1 (denoted by og−1) and generating initial conditions for that profile.

The relaxed PFT planner, however, would start by generalizing og−1. Suppose og−1

has the following profile:

U-U-N-N-N-N-N-N-N-N-N-N-N-N-D-D

This new variant of the PFT planner will relax this profile before generating its

initial conditions. Each sensor that does not appear later in the triangle table will

be replaced by a wildcard. Since only Iog
appears later in the triangle table, only the
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sensors mentioned in Iog
will remain specified in the relaxed profile. Assume that Iog

comprises the following conditions:

(bay-color> 1) ∧ (bay-shape > 1)

Then the relaxed version of og−1 will be as follows:

U-U-?-?-?-?-?-?-?-?-?-?-?-?-?-?

This indicates that what is important about eg−1 is that the bay sensor changes.

What happens in the visual sensors is considered superfluous. When the modeling

system builds initial conditions for og−1, it labels all experiences in which the bay sen-

sors increase as positive instances of the desired behavior, not just those experiences

which are exact matches. The hypothesis is that steps in the plan will become more

general and that it will be easier to find an inroad to relaxed plans.

Again, the intention in this section is to make nontrivial changes to the planner

by increasing the planner horizon and relaxing the initial condition generation phase

of the PFT process to produce farther-reaching and more generalized plans. The

planner obviously plays a pivotal role in our coverage evaluation, and this condition

is meant to determine how robust or sensitive the planner is to these types of changes.

Coverage curves for o1 and o4 are shown in figures 6.28 and 6.29. These graphs plot

the coverage for prefix and outcome success against the basic random walk outlined in

section 6.2.2. Graphs for the remaining three outcomes o2, o3, and o5 exhibit similar

behavior and are ommitted for brevity. There is in fact no discernable difference in

coverage performance as a result of moving from a planning horizon of 7 to a horizon

of 9 and mixing profile relaxation into the PFT planner.

These results do not suggest that planning horizon has no effect on performance;

rather, they suggest that a small increase in horizon will not yield a small increase in

coverage. It is still our belief that improved coverage could be achieved by increasing
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Figure 6.28. Coverage statistics for o1 (N-N-N-N-N-N-N-D-D-D-U-N-N-U-N-N) on random
walk data with a planning horizon of 9 and the relaxed planner.
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Figure 6.29. Coverage statistics for o4 (N-N-N-N-N-D-N-D-N-N-N-N-N-N-N-N) on random
walk data with a planning horizon of 9 and the relaxed planner.
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horizon, but under random walk conditions, it may be necessary to expand the horizon

significantly (perhaps by 4-6 steps) before a small improvement in coverage will be

observed. This is because for each useful plan step in a random trace, we are likely

to encounter 3 or more superfluous steps, as well as steps that are counterproductive

in reaching the ultimate goal. As we move further from a goal’s home state, these

additional steps pile up and add to the computational complexity of the planning

process.

Likewise, adding in the relaxation step does not have the effect of producing

generalized plans by lifting some of the constraints of the original PFT planner.

Rather, in experimenting with the relaxed planner, we found that sometimes the

opposite was true. Recall that initial conditions are generated by building a decision

tree in which experiences that match a target profile are labeled as positive instances

and those that do not are marked negative. These experiences are then classified

using their precursory sensory states as distinguishing features. Relaxing the target

profile has the effect of increasing the number of positive instances and reducing the

number of negative instances. Also recall that the decision tree induction algorithm

has a tendency to key on “landmarks” that can distinguish one precursory state from

another (landmarks are discussed in section 6.1). By generalizing the target profile,

we mix a number of different specific profiles into one more general profile. The

decision tree induction algorithm can no longer key on landmarks as a result. In

cases where landmarks are the most succinct way of expressing initial conditions,

initial condition trees will become larger and initial conditions more cumbersome as

a result of relaxation. Instead of producing more general plans with easier-to-achieve

steps, the opposite can become true. This effect is not terribly common, but the effect

is that coverage does not improve as a result of the relaxation process.
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In sum, parameter adjustments and steps taken to improve the generality of the

planner seem to have little effect on coverage. The planner seems relatively robust

against such tinkering.

6.2.5 The Cheat Walk

Each of the previous experiments suggest that we can make minor improvements

in performance by following one control policy as opposed to another or by tuning

parameters such as planning horizon. They also suggest that characteristics of the

goals, such as the number and accessibility of home states, play a role in determining

their eventual coverage once the system has run for a while and built good models. We

have run additional experiments (which are not included here) to test other aspects of

the system such as the execution module and its use of abort reasons. Many of these

experiments are ommitted because they suggested similar results: that they probably

play a role in coverage, but when viewed in the larger context of 100 potential goals

and 72 possible starting states, their contribution is small.

For our final experiment, we will look at a condition in which the agent is given

good exemplars, from a variety of starting states, at regular intervals throughout a

random walk. We call this condition the cheat walk, as the agent does not have to

manage to reach the goal outcome on its own in order to get access to traces useful

in planning. Every 50 experiences throughout development, the regular random walk

is suspended. The agent is then given a sequence of actions to execute that take it

to a new starting state, and subsequently it is given another action sequence that

will result in an exemplar of a target outcome. In this way, the cheat walk seeds the

experience trace with good exemplars. Here we will test the theory that with good

exemplars, high levels of coverage can be attained quickly.

Coverage curves and exemplar plots are shown in figures 6.30 through 6.34. Each

of these plots shows that exemplars are introduced at a near constant rate (they are
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Figure 6.30. Coverage statistics for o1 (N-N-N-N-N-N-N-D-D-D-U-N-N-U-N-N) on random
walk data seeded with exemplars.

also encountered during the random walk) and that performance is well above that

of a normal random walk. Each of the target outcomes achieves coverage of 60% or

greater, with some exceeding 70%. Furthermore, the effects of home states, or their

remoteness, appears to be mitigated in the cheat walk. The result appears to be that

if useful exemplars exist, the PFT planner will find them.

Coverage plots are shown for two of our target outcomes in figures 6.35 and 6.36.

They show the development of excellent coverage centered around the home state of

o2 and o3 as the agent collects experiences. Tests on outcome o2, whose remote home

state made coverage difcicult in our previous experiments, show an accelerated cover-

age curve, resulting in high levels of coverage after only 300 experiences seeded with

good exemplars. As the models destabilize and restabilize due to the rapid introduc-

tion of exemplars, there are periods in which there is a loss of coverage, as shown in

the coverage plot at center of figure 6.35. Once the models have become accurate and

stable, as they are after 1500 experiences, the existence of good exemplars allows for

coverage over a large region of the starting state space. Figure 6.36 shows a similar
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Figure 6.31. Coverage statistics for o2 (N-N-D-D-U-N-N-U-N-N-N-N-N-D-N-N) on random
walk data seeded with exemplars.
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Figure 6.32. Coverage statistics for o3 (D-D-N-N-N-N-N-N-N-N-N-N-N-N-N-N) on random
walk data seeded with exemplars.
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Figure 6.33. Coverage statistics for o4 (N-N-N-N-N-D-N-D-N-N-N-N-N-N-N-N) on random
walk data seeded with exemplars.
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Figure 6.34. Coverage statistics for o5 (N-N-N-N-U-N-N-N-D-D-U-N-D-U-U-U) on random
walk data seeded with exemplars.
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Figure 6.35. Coverage plots for outcome o2 during a cheat walk after 300, 900, and
1500 experiences, from left to right.

Figure 6.36. Coverage plots for outcome o3 during a cheat walk after 300, 900, and
1500 experiences, from left to right.

pattern for outcome o3 in which the agent drops debris into an occupied cell. Note

that coverage ramps up quickly for starting states in which the bay is already full;

the experience trace is seeded with these exemplars early. After 1500 experiences,

exemplars in which the bay is empty at the outset have been experienced, and as a

result, more complete coverage is reflected in the rightmost plot of figure 6.36.
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6.3 Discussion

Our evaluation targets the two components that are responsible for generating

knowledge that runs our system: the modeling system, which produces models relat-

ing sensory conditions to action outcomes, and the planner, which produces actionable

plans in the form of triangle tables. We evaluated these two system using measures

of accuracy and facilitation, respectively, under a number of conditions indended to

elucidate the primary contributors to our system’s overall success or failure. Many

of these conditions were aimed at understanding the link between control policy and

the development of activity.

Our accuracy tests suggest several findings. First and foremost, the combination

of a reasonably coarse outcome classifier (such as Delta-Simple or Delta) and

decision tree induction provide predictive models with accuracy sufficient to serve

as a basis for our developmental system. Even in the absence of a sensible control

policy, our models are adequate to score 50% at the winner-take-all prediction task

with under 1, 000 experiences over all 432 state/action pairs in the GridSim domain.

If we break the accuracy measure down to sensor-by-sensor predictions, by looking

at HI disparity, that number goes up to 65% when the agent has 1, 000 experiences

to go by. Adding a hill-climbing control policy that executes the action about which

the least is known, which we call the L0 controller, accelerates learning by focusing

on opportunities to learn. Under this control policy, 80% HI accuracy is possible

with only 500 experiences - only a few more than the 432 possible state/action pairs.

That accuracy number rises to better than 90% by 1, 000 experiences. Ultimately, the

questions we sought to answer with the accuracy test were: “What level of prediction

accuracy can we expect from our modeling system?” and “Is that level good enough

to suggest that a planner based on those models might have a resaonable chance

of achieving its goals?” The answer to the first question is that for an arbitrary

state/action pair, in a domain where noise is not a significant problem, the modeling
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system is sufficiently accurate to predict sensor trends at least 95% of the time after

2, 000 experiences under the L0 policy. This suggests an affirmative answer to the

second question.

Peripheral questions that the accuracy tests were designed to answer dealt with

how the modeling system reacts to properties of the environment and how sensitive

prediction accuracy is with regards to the outcome classifier. Our experiments with

a larger simulation showed that with a considerably larger grid, accuracy did not

suffer, although the learning rate did slow down proportionately with the increase

in state/action pairs. We also looked at partial-observability issues in the GridSim

simulator. Our modeling system will opportunistically use fixtures in the environment

to improve predictive accuracy, as witnessed in the statically configured GridSim

domain. Where partial observability cannot be skirted, impure decision tree leaves

will inevitably appear in the underlying model. Impure leaves suggest a distribution of

outcomes, and their observed frequencies are known so that probabilistic predictions

can be made. In many cases, the sensors whose behavior cannot be predicted can be

determined by analysis of the outcomes. Through this analysis it is possible to make

partial outcome predictions with 100% accuracy. We might call these incomplete

predictions “generalized operators”, and in some cases these operators can still be

useful in planning.

Finally, we considered the impact of outcome classification on model quality. The

ssc classifiers offer three levels of granularity. We found that the Delta and Delta-

Simple, which are based on simple mathematics and hard limits, offer no resistance to

the initial condition induction process in the GridSim dp,aom, allowing the highest

levels of accuracy. Their simple expressiveness is limited to describing outcomes

by their net result. The subtleties of “shape” in sensor behavior are lost. For the

purposes of planning, it is not a terrible tradeoff to be made, since planning operators

are traditionally specified in this way (by net change) anyways. The ssc1 classifier
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does capture the subtleties of shape at the expense of introducing hypothesis tests

in the piecewise linear fit algorithm. The combination of a greedy algorithm and the

possibility of overfitting result in mutliple interpretations for experiences produced

by a single generating process. The result is expressiveness at the cost of accuracy.

In the end, it may be possible to move between levels of granularity as necessary to

navigate the tradeoff between expressiveness and accuracy.

Our facilitation experiments with the GridSim simulator show that performance

hinges first on the stabilization of good models over an initial period determined

by the modeling system in conjunction with a reasonable exploration policy. Once

the modeling system has settled down, the primary influence on facilitation is the

existence of good exemplars for the PFT planner to work with.

A good exemplar takes the agent from a unique state to a goal state without any

superfluous actions along the way; superfluous or coutnerproductive actions have the

effect of pushing distant start states outside the planning horizon, where it will be

impossible for our planner to successfully retrieve a plan. All the other candidate

influences that we identified at the outset of our facilitation experiments seem to be

related through their association with good exemplars: the control policy, planning

horizon, exemplar count, and even characteristics of the goal outcome like accessibility

and number of home states. The control policy determines how focused experience

traces will be in moving towards a goal outcome. Planning horizon can trade off the

ability to wade through superfluous steps to recover plans from “messy” experience

traces at the cost of additional computation time. Goal characteristics simply make

the generation of useful exemplar traces more or less likely under a random walk or

even a greedy exploration policy like lpq.

In the absence of any way to consistently produce good experience traces from

unique starting states (our “cheat walk” flies in the face of any disciplined or believable

approach to development), we can reasonably expect to achieve moderate levels of
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facilitation coverage (in the 30-40% range) in and around the home states of most

outcomes. A combination of guided exploration, such as the l0 controller provides,

and exploitation such as the PFT planner, seems to be the most sensible approach.

The l0 controller provides a way to improve models and produce unique trajectories

through the state space, and the planner provides a way to test and optimize existing

experience traces that can be used to achieve goals. The combination of these two

policies in a balanced controller such as our motivational system should provide a

mechanism for extending the range of our planner beyond what was experienced under

any one control policy. In cases where good experience traces can be experienced to

cover a wide variety of starting states, we can expect facilitation coverage scores in

the 60-70% range, or perhaps beyond.

This final conclusion – that the system must produce good exemplars originating

from all over the state space – is not at odds with any of the theoretical foundations

of this dissertation. It is, in fact, in close accordance with Piaget’s theories and the

interactionst philosophy that we drew upon for our thesis. Developing agents repeat

and exercise behaviors with subtle variations to increase coverage for their developing

activities. This type of repeated experimentation and integration of smaller activities

into larger ones is what Piaget called a primary circular reaction.

One of the assumptions of our system when we chose to use the case-based PFT

planner was that whatever control policy we used, be it the motivational system

described in chapter 5, a random walk, or any other control system, combined with

generalizability in the domain, would enable coverage to spread throughout the state

space. What we found with our simple 8×8 GridSim domain was that generalization

was not terribly prevalent. Most ssc outcomes in the GridSim domain had only 2 or

4 home states. As a result, outcome models are not very general, and neither are the

types of plans the PFT planner builds. In order for PFT to generate a plan from any

given experience trace, the agent more or less needs to be sitting somewhere along



c©Matt Schmill 2003, preprint - do not distribute 198

that trace. This is why a wide variety of succinct exemplar traces plays such a crucial

role in the performance of our system.

Our system lacks two key components that could potentially close the loop on a

Piagetian type of development. First, we lack a control policy that can consistently

set up the primary circular reaction. A simple example of a primary circular reaction

in a human infant would be mouthing. Mouthing is a behavior in which a child

takes an object and puts it (or part of it) into her mouth. Between the environment

and the whims of the child, opportunities for mouthing are everywhere. Anything

within reach is fair game, and a child can put down an object and easily return

to it to attempt a new and innovative variation on mouthing that same old object.

Opportunities, at least in the GridSim environment, are limited. Many outcomes

exist only in a single grid cell, and once the outcome has been encountered, setting

up a novel situation in which to exercise that outcome may require as intricate (or

more intricate) a plan as will be required to exercise the original outcome. Second,

our system lacks a generative component that can extend plans generated by the

PFT planner. We have found that the PFT planner can build a plan if it can find

an expereince trace that leads to the goal and has an inroad at the current state.

But executing this plan does not produce any new procedural knowledge. The PFT

planner is purely exploitative. A generative component would use operator models

to produce novel experience traces. We found full-blown generative planning fraught

with difficulties in chapter 3; backward-chaining was a particular trouble because

of the complexities of state projection in a dynamic, continuous state space. But

if the generative component were limited to one-step plans, then state projection

would not be necessary. That is, suppose PFT could find no experience trace with

an inroad at the current state, but it could find an experience trace which came

within a single initial condition of matching the current state. Perhaps there is

an operator that could achieve that single condition in a single invocation. This
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would not require state projection to determine. The operator could be executed,

and then PFT could reattempt to find an inroad into the experience trace. If the

operator succeeded in connecting to an inroad, the execution would have the effect

of “extending the exemplar”. This process, repeated whenever it was opportune,

would have the effect of widening coverage until the planning horizon is reached;

an extremely simple generative component combined with a case-based planner, and

plenty of practice time, could result in eventual coverage of the starting state space.



CHAPTER 7

CONCLUSION

This dissertation describes a model of the development of activities for situated

agents. Our system comprises four distinct components that handle different parts

of the developmental process: a modeling system that learns the context-dependent

effects of actions, a planner that uses experience traces to reproduce desirable ac-

tivities, a motivational system that decides among the many things an agent might

spend its time doing, and an execution component that controls the implementation

of plans into physical activity.

The primary contributions of this work stem from the distinction which we draw

between learning and development. Learning is the process of acquiring and refining

a particular knowledge structure. An agent learns how to grasp an object or what

it means to be graspable. Development is an ongoing process of posing, solving, and

later refining learning tasks.

Many examples of capable learning systems exist in literature. Few systems can be

considered developmental systems according to definition above because they cannot

pose their own learning problems. A system might choose from a prespecified list of

goals or it may learn the dynamics of a reward signal in order to learn a particular

behavior. The centerpiece of our system is the Piaget-inspired concept of planning

to act. The planning to act philosophy states that activity itself is rewarding and

consequently, the goals of an agent are to engage in and exercise activities, not to

achieve arbitrary sensory or perceptual states. Planning to act, in conjunction with

our motivational system, allows our system to define, select, and pursue its own goals.

200
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While it is a simple idea, this idea of planning to act is what allows us to make the

leap from planning and learning to a system that develops activities.

A system that not only learns but develops activities is a significant contribution

for two major reasons. The first and most practical reason is that a developing agent

will learn whatever activities an environment affords, in the absence of supervision.

As it interleaves exploration and exploitation it develops a corpus of activities that

will frequently be transferable to supervised tasks that may arise later in its lifetime,

even if the sensor and effector implementation of the agent is changed. A human

experimenter may choose to allow an agent to explore and achieve some level of com-

petence on its own before exerting pressure (through the motivational system) to solve

specific domain tasks that have general utility (like dropping debris in receptacles)

once it has a reasonable chance of doing so.

The second benefit of a developmental system is that it can serve as a platform

for later conceptual development. Our system generates two types of operational

knowledge: domain models and activities in the form of plans. We believe that the

combination of these two forms of knowledge are foundational to classes, concepts

and language. Our initial conditions contain conceptual information that, together

with outcome classes, could be considered the beginnings of concept, for example.

Consider the outcome of lifting debris into the cargo bay in the GridSim simulator.

The initial conditions may specify that objects of a certain shape will result in a

successful lift whereas other objects will not. Those conditions that are attached to

the object in the current cell sensor form an intensional class of things that allow

a lift to succeed. They define the concept of what is liftable. Later developmental

systems have the opportunity to attach language to meanings rooted in the domain

and activity models of our system.

Our evaluation is designed to validate the primary contributions of this disserta-

tion: that planning to act allows us to make the leap from learning to development,
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that planning can serve as the basis of development, that our system generates useful,

declarative models of its environment, and that in the end our system does develop a

library of useful and reusable activities. The evaluation itself is significant for method-

ological reasons. By moving to the highly controlled GridSim environment, we were

able to perform a systematic empirical analysis of development and the factors that

determine success or failure of planning and modeling in our system. These analyses

allow us to draw a number of conclusions. First, our modeling system creates models

of the environment that improve over time. Accuracy in a controlled, deterministic

domain can approach 100% in some cases, and the declarative models our system gen-

erated reflect actual structure present in the environment that we believe can form

the basis for conceptual structures such as language and concepts. Second, planning

to act allows an agent that can identify the qualitatively distinct outcomes of its ac-

tions to pursue outcomes as goals in an unsupervised manner. This allows an agent

to consider a fixed number of goals, and assign value to them, in cases where the state

space is unbounded or virtually so. Our ssc filters provide examples of one way an

agent can distinguish among the different outcomes of its actions, and our facilitation

results show that arbitrary goals can be pursued and that facilitation does develop

with experience. Third, experiments showed that our case-based PFT planner was

able to generate plans that allowed our agent to reproduce outcomes. Importantly,

our experiments with different control policies show that facilitation for some out-

come o can improve regardless of whether exploration is biased toward developing

o or not. Although assuring good traces leading to o is the single most important

factor in improving facilitation, moderate levels of facilitation can be achieved for

most outcomes by simply setting an agent out on a random walk. The fact that good

traces in the experiences of the robot are the most significant factor to performance

at once suggests two things: that our system is for the most part robust against small

changes in parameters such as planning horizon, and that the most fruitful lines of
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future work will be those that involve either directed exploration or simple ways of

extending existing PFT plans (to produce more good experience traces).

7.0.1 Limitations and Future Work

The evaluation of our system in the GridSim domain was in general very positive

in that we demonstrated that our system can engage in a developmental process in

which an agent becomes increasingly able to achieve its goals. At the same time, some

general limitations of our system became apparent in the course of our evaluation,

and our results were most suggestive that there are a great many opportunities to

extend this system in future work.

The major limitations fall into two categories. Technical limitations are related to

our choice of algorithms. That our system makes frequent use of landmarks to locate

its exact location in the grid is a limitation that stifles the generation of general initial

conditions. This limitation is likely a result of a domain with few opportunities for

generalization and a greedy tree building algorithm that selects sensory features that

most accurately differentiate action outcomes. Another technical limitation imposed

by the tree-building component is that the initial condition space is carved up by

axis-parallel splits only. 1

Another type of limitation is representational. The results reported in this dis-

sertation are also of a slightly less ambitious nature than the proposal that precedes

it. In section 1.2, we considered the economy of hierarchical activity representations.

The work in this dissertation represents the development of what we called flat rep-

resentations, in which each step of a plan is a primitive action. Our conviction that

the economy of hierarchical representations is an integral part of intelligent behavior

1This is a limitation present in most decision tree inductions, but lifted in a few, such as the
algorithms described in [57] and [35].
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remains. The work in this dissertation can be seen as a first step to learning more

complicated activities that are made up of sophisticated hierarchies of behavior.

The limitations and contributions of this work suggest three distinct lines of re-

search for future work: improving performance, integrating concept and language

learning into our developmental framework, and developing activities in new and

more challenging domains.

Performance improvements could be achieved a number of ways. We are most

optimistic that adding a very simple generative planning component to the PFT

planner, as described in section 6.3, will ensure that an agent is able to expand its

effective planning radius over time by extending short, working PFT plans one step

at a time. Also, we note that the results presented in this dissertation are without

plan caching scheme. In addition to an improvement in computation time, we believe

that cached plans can themselves be utilized by the simple generative component,

allowing our planner to produce hierarchical activities, and effectively increasing the

planning radius at the same time.

That our system is producing declarative models of its environment and the activ-

ity it affords suggests that opportunities for integrating concept and language learn-

ing already exist. We intend to expound upon the results of this work by building

grounded concept and language learning systems on top of it. Related work on con-

cept learning [68, 69] and language learning [62] share in our interactionist philosophy.

We envision a system which simultaneously tackles these three aspects of development

at once.

Finally, we would like to broaden the application of our system to new agents and

domains. It has always been our contention that richer activities and concepts are

afforded by more sophisticated domains. Our experiments hinted that this was true,

as GridSim appears to be a poorly generalizable domain with limited opportunities

for sophisticated interactions. Our initial experiments with the Pioneer mobile robot
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indicate that such domains can be approached by a system such as ours. These

domains, while more challenging to model, and more challenging to execute plans

competently in, offer rewards in the way of more sophisticated emergent behavior

and conceptual knowledge.



APPENDIX

TESTING FOR SLOPE DIFFERENCES

To classify the effects of an action on sensor readings, our system uses piecewise

linear regression to discretize sensor time seris into strings of segment descriptions.

The piecewise linear fit algorithm is top-down, and is based around a test that com-

pares the slope of the sensor series before and after after a candidate split point.

The comparison works as follows. Let beforei be the slope for sensor i before the

action, and afteri be the slope of ten values from sensor i after the action and a short

delay. (The delay gives the action time to have an effect. Presently, the delay is

fixed at 1000 ms, although in future work, the robot may learn an appropriate delay

for each sensor.) To classify the effects of an action, the sensor monitor calculates

beforei−afteri for each sensor i, and converts the result to a class label, ‘+’, ‘−’, or

‘0’, representing an increase, a decrease, or no change in slope, respectively. More

precisely, the monitor tests the hypothesis that beforei =afteri with the following

statistical comparison of the slopes of two regression lines:

t =
beforei − afteri

σ̂b1−b2

, (A.1)

where σ̂b1−b2 is the estimate of the standard error for the difference of slopes from

two regression lines. This estimate is computed from the pooled variance, or sums of

squares of residuals from each least-squares line:

σ̂b1−b2 =

√

ŝ2pooled

(

1

SSX1

+
1

SSX2

)

(A.2)
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ŝ2pooled =
SSresidual1 + SSresidual2

df
(A.3)

SSresidual =
(

1− r2
)

SSY (A.4)

In Eqs. (A.2)-(A.4), SSX and SSY are the sums of squares for the independent

and dependent variables (respectively, time and sensor i), and r2 is the goodness of fit

for the regression line. Finally, the t statistic is compared to the t distribution with

n1 + n2 − 4 degrees of freedom to see whether the hypothesis of equal slope should

be rejected [42]. In our experiments, n1 = n2 = 10, because each slope is based on

ten observations.
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